Abstract:
A micro transport machine may include a substrate and a movable device comprising a drive component responsive to a wireless power source. The movable device is operable to move between a plurality of disparate areas on the substrate.
Abstract:
A polymer linear actuator for a micro electro mechanical system (MEMS) and a micro manipulator for a measurement device of cranial nerve signal using the same are provided. The polymer linear actuator has first and second bodies positioned spaced apart to a distance from each other, and one or more pairs of V-type moving units connecting the first and second bodies together, wherein the moving units in pair are opposed to each other to convert a rotation motion of the respective moving units into a linear motion, thereby causing the first and second bodies to move linearly.
Abstract:
A micro or nano electromechanical transducer device formed on a semiconductor substrate comprises a movable structure which is arranged to be movable in response to actuation of an actuating structure. The movable structure comprises a mechanical structure having at least one mechanical layer having a first thermal response characteristic, at least one layer of the actuating structure having a second thermal response characteristic different to the first thermal response characteristic, and a thermal compensation structure having at least one thermal compensation layer. The thermal compensation layer is different to the at least one layer and is arranged to compensate a thermal effect produced by the mechanical layer and the at least one layer of the actuating structure such that the movement of the movable structure is substantially independent of variations in temperature.
Abstract:
A micro-electrical-mechanical systems (MEMS) device includes a substrate, one or more anchors formed on a first surface of the substrate, and a piezoelectric layer suspended over the first surface of the substrate by the one or more anchors. A first electrode may be provided on a first surface of the piezoelectric layer facing the first surface of the substrate, such that the first electrode is in contact with a first bimorph layer of the piezoelectric layer. A second electrode may be provided on a second surface of the piezoelectric layer opposite the first surface, such that the second electrode is in contact with a second bimorph layer of the piezoelectric layer.
Abstract:
An electromechanical transducer (1) has a pressurizing chamber (21) and a side-chamber (23) formed in a plate (11). On a driven film (13) forming the upper wall surface (21a) of the pressurizing chamber (21) and the side-chamber (23), a lower electrode (33), a driving member, and an upper electrode (35) are formed in this order. The driving member is composed of an operation section (31p) located over the pressurizing chamber (21), and an extended section (31a) extending from the operation section (31p) to over the side-chamber (23). The side-chamber (23) has a smaller width than the pressurizing chamber (21) in a second direction perpendicular to a first direction in which the side-chamber (23) is located beside the pressurizing chamber (21). The extended section (31a) of the driving member has a smaller width than the side-chamber (23) in the second direction.
Abstract:
A micro-electro-mechanical device includes a substrate; a piezoelectric actuator disposed on the substrate; and an elastic member affixed to the substrate at a first end thereof, and mechanically coupled to the piezoelectric actuator; wherein the elastic member comprises at least one of: a notch, a groove, and a recess.
Abstract:
Processes for making a membrane having a curved feature are disclosed. A profile-transferring substrate surface having a curved feature is created by vacuum bonding a membrane to a top surface of a substrate, where the top surface has a cavity formed therein. The surface of the membrane is exposed to a fluid pressure such that the membrane deforms and the undersurface of the membrane touches the bottom of the cavity. The curved feature formed in the deformed membrane can be made permanent by annealing the bonding areas between membrane and substrate. A uniform layer of material deposited over the exposed surface of the membrane will include a curved feature at the location where the membrane has bent into the cavity. After at least one layer of material has been uniformed deposited on the membrane, the cavity can be etched open from the bottom to remove the membrane from the underside.
Abstract:
An active matrix organic LED display having a matrix of multiple light emitting pixels and electronic drive circuitry for selectively addressing the pixels, each pixel containing an organic LED. The electronic drive circuitry includes row scan electrodes and column data electrodes that interconnect the matrix of pixels. The circuitry also includes a MEMS switching device and a memory capacitor for each pixel, the MEMS switching device connecting the memory capacitor to a column data electrode during addressing of a pixel and connecting the memory capacitor to the organic LED of each pixel during light emission.
Abstract:
A micro-electro-mechanical device includes a substrate; a piezoelectric actuator disposed on the substrate; and an elastic member affixed to the substrate at a first end thereof, and mechanically coupled to the piezoelectric actuator; wherein the elastic member comprises at least one of: a notch, a groove, and a recess.
Abstract:
A micro-electro-mechanical device including a substrate with a main surface, a piezoelectric actuator with a first side mechanically coupled to the substrate, an elastic member with a first end mechanically coupled to the substrate, and a transfer member mechanically coupling a second side of the piezoelectric actuator to the elastic member. The piezoelectric actuator is positioned lateral to an unfixed region of the elastic member. The method includes applying a voltage to a piezoelectric actuator altering the piezoelectric actuator's dimension vertical to the main surface of the substrate; and mechanically transferring the alteration to a coupling point of an elastic member.