Abstract:
The invention relates to an semi-conductor device comprising a first surface and neighboring first and second electric elements arranged on the first surface, in which each of the first and second elements extends from the first surface in a first direction, the first element having a cross section substantially perpendicular to the first direction and a sidewall surface extending at least partially in the first direction, wherein the sidewall surface comprises a first section and a second section adjoining the first section along a line extending substantially parallel to the first direction, wherein the first and second sections are placed at an angle with respect to each other for providing an inner corner wherein the sidewall surface at the inner corner is, at least partially, arranged at a constant distance R from a facing part of the second element for providing a mechanical reinforcement structure at the inner corner.
Abstract:
The invention is directed towards methods and compositions for identifying the amount of hydrofluoric acid in a buffered oxide etching composition. In buffered oxide etching compositions it is very difficult to measure the amount of hydrofluoric acid because it has varying equilibriums and it is toxic so it hard to handle and sample. When used to manufacture microchips however, incorrect amounts of hydrofluoric acid will ruin those chips. The invention utilizes a unique method of spectrographically measuring the hydrofluoric acid when in contact with added chromogenic agents to obtain exact measurements that are accurate, immediate, and safe.
Abstract:
The invention is directed towards methods and compositions for identifying the amount of hydrofluoric acid in a buffered oxide etching composition. In buffered oxide etching compositions it is very difficult to measure the amount of hydrofluoric acid because it has varying equilibriums and it is toxic so it hard to handle and sample. When used to manufacture microchips however, incorrect amounts of hydrofluoric acid will ruin those chips. The invention utilizes a unique method of spectrographically measuring the hydrofluoric acid when in contact with added chromogenic agents to obtain exact measurements that are accurate, immediate, and safe.
Abstract:
A processing method having excellent processing performance at a low flow rate is provided. A method for processing a surface of a sample uses reactive clusters produced by adiabatic expansion of a gas mixture ejected from a nozzle into a vacuum processing chamber. The gas mixture contains a reactive gas chlorine trifluoride, a first inert gas argon, and a second inert gas xenon. The gas mixture in an inlet of the nozzle has a pressure of 0.4 MPa (abs) or more. The reactive gas constitutes 3% by volume or more and 10% by volume or less. The first inert gas constitutes 40% by volume or more and 94% by volume or less. The second inert gas constitutes 3% by volume or more and 50% by volume or less of the gas mixture.
Abstract:
Methods of forming at least one nanochannel include: (a) providing a substrate having a thick single or a thick multi-layer overlayer; (b) milling at least one channel through the overlayer into the substrate; then (c) removing the overlayer; and (d) forming at least one nanochannel in the substrate having an average width and depth dimension that is less than about 10 nm in response to the milling and removing steps.
Abstract:
A microelectromechanical system (MEMS) device may include a MEMS structure over a first substrate. The MEMS structure comprises a movable element. Depositing a first conductive material over the first substrate and etching trenches in a second substrate. Filling the trenches with a second conductive material and depositing a third conductive material over the second conductive material and the second substrate. Bonding the first substrate and the second substrate and thinning a backside of the second substrate which exposes the second conductive material in the trenches.
Abstract:
A structure includes a silicon layer disposed on a buried oxide layer that is disposed on a substrate; at least one transistor device formed on or in the silicon layer, the at least one transistor having metallization; a released region of the silicon layer disposed over a cavity in the buried oxide layer; a back end of line (BEOL) dielectric film stack overlying the silicon layer and the at least one transistor device; a nitride layer overlying the BEOL dielectric film stack; a hard mask formed as a layer of hafnium oxide overlying the nitride layer; and an opening made through the layer of hafnium oxide, the layer of nitride and the BEOL dielectric film stack to expose the released region of the silicon layer disposed over the cavity in the buried oxide layer. The hard mask protects the underlying material during a MEMS/NEMS HF vapor release procedure.
Abstract:
MEMS switches and methods of manufacturing MEMS switches is provided. The MEMS switch having at least two cantilevered electrodes having ends which overlap and which are structured and operable to contact one another upon an application of a voltage by at least one fixed electrode.
Abstract:
Disclosed are an apparatus for harvesting/storing piezoelectric energy, including: a substrate having a groove at a side thereon; a piezoelectric MEMS cantilever having an end fixed to the substrate and the other end floating above the groove, and configured to convert and store an external vibration into electric energy; and a mass formed at one end of the piezoelectric MEMS cantilever and configured to apply a vibration, and a manufacturing method thereof.
Abstract:
Polycrystalline silicon germanium (SiGe) can offer excellent etch selectivity to silicon during cryogenic deep reactive ion etching in an SF6/O2 plasma. Etch selectivity of over 800:1 (Si:SiGe) may be achieved at etch temperatures from −80 degrees Celsius to −140 degrees Celsius. High aspect ratio structures with high resolution may be patterned into Si substrates using SiGe as a hard mask layer for construction of microelectromechanical systems (MEMS) devices and semiconductor devices.