Abstract:
Dynamic load-absorbing materials suitable for use as cushion-type and armor-type materials, for example, of types that can be incorporated into protective gear, equipment, armor, vehicles, and various other structures, or used for the isolation and dissipation of vibratory loads, such as vibration isolators used to support avionic equipment. The impact-absorbing materials include a matrix material (22) and at least first and second sets of inclusions (which can be either included material or voids) (24) in the matrix material (22) that define a hierarchy of inclusions (24) in the matrix material (22). The inclusions (24) differ in size, quantity, shape and/or composition in a direction through the impact-absorbing material, the combination of which contributes to the ability of the material to exhibit at least one property that changes as the inclusions (24) are deformed under load.
Abstract:
Methods for making polymer particles in gel form via an emulsion and/or suspension polymerization are provided. In at least one specific embodiment, the method can include reacting a first reaction mixture comprising a phenolic monomer, an aldehyde monomer, and a first catalyst to produce a prepolymer. The method can also include combining the prepolymer with a carrier fluid and a second catalyst to produce a second reaction mixture. The second catalyst can include a dicarboxylic acid, an anhydride, a dihydroxybenzene, or any mixture thereof. The method can also include polymerizing the prepolymer to form polymer particles in gel form.
Abstract:
Crosslinked flame retardant thermoplastic elastomer gels are provided. The crosslinked flame retardant thermoplastic elastomer gels comprise a char catalyst, a char former, a maleic anhydride-modified styrene ethylene/butylene styrene polymer, and a softener oil. Methods are provided of making crosslinked flame retardant thermoplastic elastomer gels.
Abstract:
To provide a propylene-based copolymer and a propylene-based copolymer composition, each of which has a high melt tension because it has a long-chain branched structure, exhibits excellent molding processability during molding, such as inflation molding, extrusion molding, blow molding, injection molding or vacuum forming, and is capable of favorably providing a foamed product having an excellent expansion ratio and excellent cell uniformity in the foaming stage. The propylene-based copolymer (A) of the present invention comprises 50 to 95% by mol of constituent units [i] derived from propylene, 4.9 to 49.9% by mol of constituent units [ii] derived from an α-olefin of 2 to 10 carbon atoms other than propylene and 0.1 to 10% by mol of constituent units [iii] derived from a non-conjugated polyene (with the proviso that the total amount of the constituent units [i], [ii] and [iii] is 100% by mol), and is characterized by satisfying specific requirements (a) and (c).
Abstract:
An ethylene-propylene-diene rubber foamed material is obtained by foaming a rubber composition containing an ethylene-propylene-diene rubber and a cross-linking agent. The cross-linking agent does not contain sulfur and contains a thiuram compound and the mixing ratio of the thiuram compound with respect to 100 parts by mass of the ethylene-propylene-diene rubber is 0.05 parts by mass or more and less than 20 parts by mass.
Abstract:
To provide a fluorinated elastomer composition which can improve, in production of a fluorinated foamed rubber by foaming and crosslinking a fluorinated elastomer using an organic peroxide as a crosslinking agent, the foamed state and physical properties of the fluorinated foamed rubber.A fluorinated elastomer composition which comprises 100 parts by mass of a fluorinated elastomer, from 0.1 to 20 parts by mass of a blowing agent and from 0.05 to 10 parts by mass of a crosslinking agent comprising a peroxide compound, and which contains no crosslinking aid or contains a crosslinking aid comprising a compound having at least two carbon-carbon double bond-containing groups in the same molecule, in a content of at most 0.3 part by mass, is foamed and crosslinked to produce a fluorinated foamed rubber.
Abstract:
A porous stamp material allows only resin in a region thereof irradiated with a laser beam during laser engraving in a production process of an ink stamp to be burnt and vaporized while preventing melting in any other unwanted region. The porous material for ink stamps comprises: at least one thermoplastic resin selected from the group consisting of low-density polyethylene, linear low-density polyethylene, high-density polyethylene, ethylene-alpha-olefin copolymer, ethylene-vinyl acetate copolymer, and ethylene-acrylic copolymer; at least one thermoplastic elastomer selected from a plurality of different hydrogenated styrene based thermoplastic elastomers; and at least one filler selected from a plurality of different inorganic compounds, wherein the thermoplastic resin and/or the thermoplastic elastomer are cross-linked, and formed in a continuous pore structure.
Abstract:
One aspect of the invention provides a nanothin polymer film having a plurality of pores defined solely by polymers of the polymer film. The pores have a uniform size. Another aspect of the invention provides a method of using a polymer film capsule with pores defined solely by the film described herein. The method includes: separating a mixture of chemicals having variable surface areas from the polymer film capsule by using a size exclusion column; collecting the polymer film capsule eluate from the size exclusion column; and determining a content of chemicals retained in the polymer film capsule by using UV/vis spectroscopy.
Abstract:
Provided are methods for making textured implantable materials made from two part RTV silicone foams and having a desired color or tone without the need for dyes or colorants.
Abstract:
Provided is a porous epoxy resin sheet produced by cutting a cured epoxy resin body to a predetermined thickness, the porous epoxy resin sheet having a large surface area and a uniform in-plane pore size distribution. A method for producing a porous epoxy resin sheet, comprising forming a cylindrical or columnar cured resin body from a resin mixture containing an epoxy resin, a curing agent, and a porogen, cutting the surface of the cured resin body at a predetermined thickness to make an epoxy resin sheet, and then removing the porogen from the sheet to render the sheet porous, wherein when the cured resin body is formed from the resin mixture, curing is performed in a state where the viscosity of the mixture is at least 1,000 mPa·s.