Abstract:
Flame resistant compositions based on nylon-6 (PA 6) or nylon-6,6 (PA 66) may include melamine cyanurate, titanium dioxide, glass fibres, and non-fibrous and non-foamed ground glass having a specific particle size distribution, geometry and optionally sizing. Methods for producing the composition are also provided, as well as use of the compositions for production of products for the electrical industry, preferably electrical components such as residual current circuit breakers and other circuit breakers.
Abstract:
Anhydrite calcium sulfate whiskers are prepared by combining alpha calcium sulfate hemihydrate and water to form a slurry, autoclaving the slurry to form alpha calcium sulfate hemihydrate whiskers in water, dewatering the alpha calcium sulfate hemihydrate whiskers, and heating the alpha calcium sulfate hemihydrate whiskers to form anhydrite calcium sulfate whiskers. A composite includes alpha-derived anhydrite calcium sulfate whiskers and a base material and is prepared by combining alpha-derived anhydrite calcium sulfate whiskers with a base material to form a composite.
Abstract:
An object of the present invention is to provide an anisotropic heat conductive composition comprising: resin; and graphite fillers dispersed into the resin, wherein the graphite fillers each have a maximum diameter A in parallel with a basal plane of each of the graphite fillers and a maximum length C perpendicular to the basal plane, an average of the maximum diameters A ranges from 1 μm to 300 μm, an average ratio of the maximum diameter A to the maximum length C represented by A/C is at least 30, a content of the graphite fillers is 20 mass % to 40 mass %, and an average of a smaller angle made by the basal plane and a sheet surface of the sheet anisotropic heat conductive composition is less than 15°.
Abstract:
The present disclosure, pertains to resins, fibres, and/or resin/fibre composites. Certain aspects are directed to: the construction, composition and methods for producing resins, resin systems and/or resin blends that are suitable for use in very short fibre polymerisable liquid composites and other composites. Certain aspects are to the treatment of fibres and other types of reinforcement fillers so that they are suitable for use in very short fibre polymerisable liquid composites and other composites. Certain aspects are to methods of use and/or methods for producing very short fibre polymerisable liquid composites that can be produced by combining the aforesaid resins, resin systems and/or resin blends and treated fibres and other types of reinforcement fillers to produce suitable very short fibre polymerisable liquid composites.
Abstract:
A fiber reinforced powder paint provides improved flexural fatigue resistance for composites substrates. Fiber loading in the powder is greater than 40%. Aramid fiber loading in an epoxy based powder paint is exemplified. A composite bow limb coated with the powder paint survives a remarkably greater number of bending cycles before failure when coated with the powder paint.
Abstract:
A process is provided for manufacturing articles though injection moulding of thermoplastic material and fibres. The fibres include glass fibres and are present in the moulded article in a quantity of 25% to 50%, by mass. More than 70% of the fibres have a length exceeding 5 mm in the moulded article. The thermoplastic material has a Notched Izod Impact Strength, after being combined with said fibres, greater than 250 J/m at 23 degrees Celsius.
Abstract translation:提供了通过热塑性材料和纤维的注射成型制造制品的方法。 纤维包括玻璃纤维,并且在模塑制品中以25质量%至50质量%的量存在。 模制品中超过70%的纤维的长度超过5mm。 热塑性材料在与所述纤维结合后具有缺口伊佐德冲击强度,在23摄氏度时大于250J / m 2。
Abstract:
Thermoplastic molding compositions comprising A) from 29 to 97.5% by weight of a thermoplastic polyamide, B) from 1 to 20% by weight of melamine cyanurate, C) from 0.5 to 10% by weight of an organic phosphorus compound based on 9,10-dihydro-9-oxa-10-phosphaphenanthrene oxide (DOPO) as parent structure, D) from 1 to 50% by weight of a fibrous filler, the aspect ratio (L/D) of which is from 4 to 25, and the arithmetic average fiber length of which is from 40 to 250 μm, and E) from 0 to 50% by weight of further additives, where the total of the percentages by weight of components A) to E) is 100%.
Abstract:
A composite forming material of the present invention in which a fiberglass and a thermoplastic resin are compounded, where the fiberglass is a glass wool and a surface treatment is performed on the glass wool by spraying a solution which includes a silane coupling agent and/or a film former, a weight percent of the silane coupling agent to the glass wool is 0.24 wt %, and a weight percent of the film former to the glass wool is 2.4 wt %, the mean length of the glass wool is 600 μm, and the diameter is 3.4 μm.
Abstract:
An object is to provide a resin material having high strength and high vibration-damping property. A resin material includes a matrix resin and carbon nanocoils contained therein. The carbon nanocoils have electrical conductivity, so that the matrix resin containing them can easily convert a vibration energy generated in the resin material into heat and thereby damp the vibration energy in a short time. In addition, since the carbon nanocoil is in a coiled form, vibration-damping property can be enhanced in comparison with that of conductive materials such as carbon nanotube and graphite.
Abstract:
The present invention provides a thermoplastic resin formed product containing glass fiber having a length of at least 0.4 mm in an amount within a range of from 5 to 60 wt. % and at least a kind of conductive material in an amount within a range satisfying the following formula (1): ##EQU1## where, W.sub.k is the content in weight of each conductive material (%), E.sub.k is volume resistivity of each conductive material (.OMEGA..multidot.cm), and n is the number of kinds of conductive material.Further, the present invention provides also a method of manufacturing a thermoplastic resin formed product, comprising the step of forming a thermoplastic resin containing glass fiber having a weight average fiber length of at least 1 mm in an amount within a range of from 10 to 90 wt. %, in which the glass fiber is substantially impregnated with the resin, and a material containing at least one conductive material, while mixing the same or after mixing the same.