Abstract:
A flexible circuit carrier including at least one layer of polymer dielectric material, at least one layer of conductive material thereover, each layer having two major surfaces, at least one of said layers having at least one aperture therein, wherein at least one layer has a material coated on at least a portion thereof having a Young's Modulus of from about 100 to about 200 GPa, a dielectric constant (between 45 MHz and 20 GHz) of from about 8 to about 12, and a Vickers hardness of from about 2000 to about 9000 kg/mm.sup.2.
Abstract translation:一种柔性电路载体,其包括至少一层聚合物电介质材料,至少一层导电材料,其中每层具有两个主表面,至少一层所述层中至少有一个孔,其中至少一层具有 涂覆在其至少一部分上的材料具有约100至约200GPa的杨氏模量,约8至约12的介电常数(在45MHz和20GHz之间),维氏硬度为约2000至约 9000 kg / mm2。
Abstract:
The specification describes of multilevel printed circuit boards and a process for their manufacture in which capacitors and other passive components are buried between levels of the multilevel board. The capacitor in the multilevel structure is designed so that access is conveniently provided to connect from the parallel plate electrodes of the interlevel capacitor to the board surface or to another board level using plated through hole interconnects.
Abstract:
Thin film capacitors are formed by a multi-level dry processing method that includes simultaneous ablation of via openings through both the dielectric and the metal electrode layers of a capacitor. Preferably, the dielectric films are formed of barium strontium titanate and the metal electrode layers are formed of platinum. The present invention overcomes the problems associated with the use of strong etchants to sequentially form separate via openings through the electrode and dielectric layers, prevents the potential for delamination of the respective layers during wet etching and the possible undesirable effects of etching solutions on substrate materials.
Abstract:
A method for fabricating a flexible interconnect film includes applying a resistor layer over one or both surfaces of a dielectric film; applying a metallization layer over the resistor layer with the resistor layer including a material facilitating adhesion of the dielectric film and the metallization layer; applying a capacitor dielectric layer over the metallization layer; and applying a capacitor electrode layer over the capacitor dielectric layer. The capacitor electrode layer is patterned to form a first capacitor electrode; the capacitor dielectric layer is patterned; the metallization layer is patterned to form a resistor; and the metallization layer and the resistor layer are patterned to form an inductor and a second capacitor electrode. In one embodiment, the dielectric film includes a polyimide, the resistor layer includes tantalum nitride, and the capacitor dielectric layer includes amorphous hydrogenated carbon or tantalum oxide. If the resistor and metallization layers are applied over both surfaces of the dielectric film, passive components can be fabricated on both surfaces of the dielectric film. The dielectric film can have vias therein with the resistor and metallization layers extending through the vias. A circuit chip can be attached and coupled to the passive components by metallization patterned through vias in an additional dielectric layer.
Abstract:
A high-capacitance thin film capacitc is compact and has a low profile. A dielectric layer 3 is formed between opposed electrodes 1 and 2. Between the electrodes and the dielectric layer are two layers of conductive particles, 4 and 5.
Abstract:
Method and apparatus for fabricating fine pitch pattern multilayer printed circuit boards involving laminar stackable board layers providing power distribution, signal distribution and capacitive decoupling. In one respect, the invention relates to the fabrication of board layers by beginning with a metallic core, patterning the core, selectively enclosing the core in a dielectric, selectively depositing metal to form vias, plugs and signal lines, and forming dendrites with joining metallurgy on the vias and plugs to provide stackable connection from above or below the plane of the board layer. In another aspect, the invention is directed to the use of a sol-gel process to form a thin high dielectric constant crystalline film onto a metallic sheet followed with a deposition of a metallic layer onto the high dielectric constant film. The film serves as the dielectric of a capacitor layer which is thereafter in succession patterned, covered by a dielectric, and has selectively deposited a metallic layer for interconnecting the capacitor and forming vias. The ends of the vias are thereafter subject to dendritic growth and joining metallurgy to provide stackable interconnection capability. A multilayer composite laminar stackable circuit board structure is created using, as appropriate, layers having metallic cores and layers having capacitively configured cores. The multilayer laminar stackable circuit board provides direct vertical connection between surface mounted electronic components and the power, signal and capacitive decoupling layers of the composite board through the dendrites and joining metallurgy of the via and plug formations.
Abstract:
A multilayer wiring substrate which includes a glass ceramic section, a wiring layer section having a plurality of wiring layers electrically insulated from each other by a polyimide material, and an intermediate layer made of an inorganic material and arranged between the ceramic section and the wiring layer section. 8
Abstract:
Ceramic coated laminates for printed circuit boards produced by flame spraying a ceramic powder on a metal plate such as copper foil or a woven fabric prepreg, laminating one or two ceramic coated metal plates and woven fabric prepregs so as to place the ceramic layer between the metal plate and the prepreg, hot-pressing the laminated members, and if necessary peeling off the metal plate(s), are excellent in thermal conductivity and heat resistance.
Abstract:
An RC network is disclosed in which two electrically conducting regions and a dielectric lying between these regions form a capacitor. At least one of the electrically conducting regions consists of resistance material and is designed in the shape of a meandering path. This network can be balanced while still guaranteeing a uniform region distribution of the resistance and the capacitance, by means of a laser beam. Upon a carrier of heat-resistant material, a resistance layer, a dielectric of glow discharge polymer, and an opposite electrode capable of regeneration, are applied. The dielectric completely covers the resistance layer with the exception of contact pads.
Abstract:
A masking process, during the vapor deposition coating of a partially masked substrate with a condensible vaporous precursor of a coating material, which comprises causing the vaporous precursor to flow through a constricted flow path at the masked/unmasked interface during the coating process so as to provide a relatively thin coating at the end of the flow path which can be used as a tear line for removing the coating masking means along such interface.