Abstract:
Modular PCB and method of replacing one of a plurality of modules of a first PCB are provided. One embodiment of the method includes checking each module of the first PCB and each of a plurality of modules of a second PCB, cutting a malfunctioned module from the first PCB to leave a rectangular vacant area if the malfunctioned module is found, forming a plurality of indents on each side of the vacant area, cutting a good module from the second PCB if the good module is found, forming a plurality of projections on each side of the good module, placing the good module in the vacant area for coupling the indents and the projections, and applying adhesive (e.g., resin) into the coupled indents and projections for fastening the good module in the vacant area.
Abstract:
In a dividing method according to the present invention, a wiring board formed of ceramic is forced up (upper swing) by a lower clamp claw of a clamper, and some of a protruded wiring board portion protruding from a conveying chute is pressed against a support body to perform a first division under bending stress. Thereafter, the upward-located clamper is rotatably swung (lower swing) downward to allow an upper clamp claw to press down the protruded wiring board portion, thereby performing a reverse division at the first division section again as a second division. Since the second division allows a tensile force to act on a remaining and thin non-divided resin portion, the non-divided resin portion is torn off. Thus, the perfect division is enabled. Fractionalizing is done by a one-row division and an individual division so that each semiconductor device is formed.
Abstract:
Electrical circuit trimming methods. In one aspect of the invention, a trimming method includes assembling one or more components of an electrical circuit onto a printed circuit board having one or more electrical connections coupled to the said one or more components. An electrical parameter of the electrical circuit is then trimmed. The trimming of the electrical parameter of the electrical circuit includes removing a portion of the printed circuit board to break the electrical connection on the printed circuit board. In another aspect of the invention, the trimming the electrical parameter of the electrical circuit includes electrical programming of the electrical circuit.
Abstract:
A multilayer integrated substrate includes breaking grooves arranged in a grid pattern so as to section the main surface of the substrate into a plurality of blocks, and also includes fracture-preventing conductor films arranged so as to cross the breaking grooves. The fracture-preventing conductor films contain a metal component that prevents undesirable fracturing of the multilayer integrated substrate along the breaking grooves.
Abstract:
A ceramic substrate (100) includes a top surface, a plurality of identification marks (104), a protective compound (110), a bottom surface, and a plurality of grooves (106). The top surface includes a first area and a second area. The first area is defined at one or more edges portions of the top surface. The second area is defined inside the first area. The identification marks are arranged on the first area. The protective compound is covered on the second area. The grooves are defined at the bottom surface, and corresponding to the identification marks. A related method for breaking a ceramic substrate includes: (a) pasting one or more tapes on the first area; (b) covering protective compound on the second area; (c) removing the tapes; (d) cutting the protective compound according to the identification marks; and (e) breaking the ceramic substrate into individual circuit unit pieces along the grooves.
Abstract:
A retaining member for a circuit board array is provided. The retaining member includes an elongated support post having a first end and an opposite second end. A protrusion extends from the first end. The protrusion is configured to be received in a slot having side walls in a circuit board array. The support post is movable to move the protrusion within the slot from a first position wherein the protrusion is disengaged from the side walls of the slot to a second position wherein the protrusion engages the side walls of the slot to retain the circuit board array.
Abstract:
The invention provides a method for manufacturing printed wiring substrates which can manufacture printed wiring substrates each having resin dielectric layers of uniform thickness and excellent surface flatness while maintaining favorable cutting performance in a dicing step. A multi-printed wiring-substrate panel is manufactured which includes a metal plate having a first main surface and a second main surface, and resin dielectric layers disposed on the first and second main surfaces. The metal plate has first depression portions and second depression portions. The first depression portions are opened at the first main surface and arranged discontinuously along predetermined cutting lines. The second depression portions are opened at the second main surface and arranged discontinuously along the predetermined cutting lines. The multi-printed wiring-substrate panel is cut along the predetermined cutting lines into a plurality of printed wiring substrates.
Abstract:
The invention provides an electric apparatus having a printed circuit board with an improved heat dissipation capacity, and, in particular, to provide an electric apparatus requiring plural printed circuit boards that has an improved heat dissipation efficiency and can be produced at a low cost. A main printed circuit board 10 and a sub board 17 are composite-molded, and the sub board 17 is formed at an area close to or immediately below a heat-generating electronic component 23 or a heat dissipation plate 23a. Thus, by separating the sub board 17 off the main printed circuit board 10, a hole serving as a ventilating hole is formed in the main printed circuit board 10 at the area close to or immediately below the heat-generating electronic component 23 or the heat dissipation plate 23a.
Abstract:
A method of manufacturing a hybrid integrated circuit device includes the steps of forming a plurality of units each including a conductive pattern on a surface of a board made of metal, forming grooves along boundaries of the respective units of the board, electrically connecting circuit elements to the conductive patterns in the respective units, separating the respective circuit boards by dividing the board along the grooves, and flattening side surfaces of the circuit boards by pressing the side surfaces.
Abstract:
A unified process of making an electrical structure includes performing a plurality of laser etching operations on a workpiece, without removing the workpiece from a laser processing system. The workpiece includes a conductive material disposed on an electrically insulating substrate, and the plurality of laser etching operations include, but are not limited to, two or more of forming a fiducial, forming thick metal traces separated by high aspect ratio spaces, cutting an alignment hole, cutting a folding line, and singulating the electrical structure. In another aspect of the invention, a database is prepared, and communicatively coupled to the laser processing system to provide control signals that direct a portion of the plurality of operations of the laser processing system, wherein each plurality of etching operations is defined with respect to a common coordinate system.