Abstract:
A semiconductor device which includes an oxide semiconductor and has favorable electrical characteristics is provided. In the semiconductor device, an oxide semiconductor film and an insulating film are formed over a substrate. Side surfaces of the oxide semiconductor film are in contact with the insulating film. The oxide semiconductor film includes a channel formation region and regions containing a dopant between which the channel formation region is sandwiched. A gate insulating film is formed on and in contact with the oxide semiconductor film. A gate electrode with sidewall insulating films is formed over the gate insulating film. A source electrode and a drain electrode are formed in contact with the oxide semiconductor film and the insulating film.
Abstract:
A semiconductor device having a highly responsive thin film transistor (TFT) with low subthreshold swing and suppressed decrease in the on-state current and a manufacturing method thereof are demonstrated. The TFT of the present invention is characterized by its semiconductor layer where the thickness of the source region or the drain region is larger than that of the channel formation region. Manufacture of the TFT is readily achieved by the formation of an amorphous semiconductor layer on a projection portion and a depression portion, which is followed by subjecting the melting process of the semiconductor layer, resulting in the formation of a crystalline semiconductor layer having different thicknesses. Selective addition of impurity to the thick portion of the semiconductor layer provides a semiconductor layer in which the channel formation region is thinner than the source or drain region.
Abstract:
An object is to realize high performance and low power consumption in a semiconductor device having an SOI structure. In addition, another object is to provide a semiconductor device having a high performance semiconductor element which is more highly integrated. A semiconductor device is such that a plurality of n-channel field-effect transistors and p-channel field-effect transistors are stacked with an interlayer insulating layer interposed therebetween over a substrate having an insulating surface. By controlling a distortion caused to a semiconductor layer due to an insulating film having a stress, a plane orientation of the semiconductor layer, and a crystal axis in a channel length direction, difference in mobility between the n-channel field-effect transistor and the p-channel field-effect transistor can be reduced, whereby current driving capabilities and response speeds of the n-channel field-effect transistor and the p-channel field-effect can be comparable.
Abstract:
A semiconductor device and a method for manufacturing a semiconductor device are provided. A semiconductor device comprises a first single-crystal semiconductor layer including a first channel formation region and a first impurity region over a substrate having an insulating surface, a first gate insulating layer over the first single-crystal semiconductor layer, a gate electrode over the first gate insulating layer, a first interlayer insulating layer over the first gate insulating layer, a second gate insulating layer over the gate electrode and the first interlayer insulating layer, and a second single-crystal semiconductor layer including a second channel formation region and a second impurity region over the second gate insulating layer. The first channel formation region, the gate electrode, and the second channel formation region are overlapped with each other.
Abstract:
An object is to realize high performance and low power consumption in a semiconductor device having an SOI structure. In addition, another object is to provide a semiconductor device having a high performance semiconductor element which is more highly integrated. A semiconductor device is such that a plurality of n-channel field-effect transistors and p-channel field-effect transistors are stacked with an interlayer insulating layer interposed therebetween over a substrate having an insulating surface. By controlling a distortion caused to a semiconductor layer due to an insulating film having a stress, a plane orientation of the semiconductor layer, and a crystal axis in a channel length direction, difference in mobility between the n-channel field-effect transistor and the p-channel field-effect transistor can be reduced, whereby current driving capabilities and response speeds of the n-channel field-effect transistor and the p-channel field-effect can be comparable.
Abstract:
It is an object of the present invention to manufacture a TFT having a small-sized LDD region in a process with a few processing step and to manufacture TFTs each having a structure depending on each circuit separately. According to the present invention, a gate electrode is a multilayer, and a hat-shaped gate electrode is formed by having the longer gate length of a lower-layer gate electrode than that of an upper-layer gate electrode. At this time, only the upper-layer gate electrode is etched by using a resist recess width to form the hat-shaped gate electrode. Accordingly, an LDD region can be formed also in a fine TFT; thus, TFTs having a structure depending on each circuit can be manufactured separately.
Abstract:
A semiconductor device is demonstrated in which a plurality of field-effect transistors is stacked with an interlayer insulating layer interposed therebetween over a substrate having an insulating surface. Each of the plurality of filed-effect transistors has a semiconductor layer which is prepared by a process including separation of the semiconductor layer from a semiconductor substrate followed by bonding thereof over the substrate. Each of the plurality of field-effect transistors is covered with an insulating film which provides distortion of the semiconductor layer. Furthermore, the crystal axis of the semiconductor layer, which is parallel to the crystal plane thereof, is set to a channel length direction of the semiconductor layer, which enables production of the semiconductor device with high performance and low power consumption having an SOI structure.
Abstract:
To provide a liquid crystal display device having high quality display by obtaining a high aperture ratio while securing a sufficient storage capacitor (Cs), and at the same time, by dispersing a load (a pixel writing-in electric current) of a capacitor wiring in a timely manner to effectively reduce the load. A scanning line is formed on a different layer from a gate electrode and the capacitor wiring is arranged so as to be parallel with a signal line. Each pixel is connected to the individually independent capacitor wiring via a dielectric. Therefore, variations in the electric potential of the capacitor wiring caused by a writing-in electric current of a neighboring pixel can be avoided, whereby obtaining satisfactory display images.
Abstract:
It is an object to form a high quality gate insulating film which is dense and has a strong insulation resistance property, and to propose a high reliable organic transistor in which a tunnel leakage current is little. One mode of the organic transistor of the present invention has a step of forming the gate insulating film by forming the conductive layer which becomes the gate electrode activating oxygen (or gas including oxygen) or nitrogen (or gas including nitrogen) or the like using dense plasma in which density of electron is 1011 cm−3 or more, and electron temperature is a range of 0.2 eV to 2.0 eV with plasma activation, and reacting directly with a portion of the conductive layer which becomes the gate electrode to be insulated.
Abstract:
A manufacturing method of a semiconductor device of the present invention includes the steps of forming a stacked body in which a semiconductor film, a gate insulating film, and a first conductive film are sequentially stacked over a substrate; selectively removing the stacked body to form a plurality of island-shaped stacked bodies; forming an insulating film to cover the plurality of island-shaped stacked bodies; removing a part of the insulating film to expose a surface of the first conductive film, such that a surface of the first conductive film almost coextensive with a height of the insulating film; forming a second conductive film over the first conductive film and a left part of the insulating film; forming a resist over the second conductive film; selectively removing the first conductive film and the second conductive film using the resist as a mask.