Abstract:
An ion beam apparatus includes a plasma chamber with a grid assembly installed at one end of the plasma chamber and a plasma sheath controller disposed between the plasma chamber and the grid assembly. The grid assembly includes first ion extraction apertures. The plasma sheath controller includes second ion extraction apertures smaller than the first ion extraction apertures. When the plasma sheath controller is used in this configuration, the surface of the plasma takes on a more planar configuration adjacent the controller so that ions, extracted from the plasma in a perpendicular direction to the plasma surface, pass cleanly through the apertures of the grid assembly rather than collide with the sidewalls of the grid assembly apertures. A semiconductor manufacturing apparatus and method for forming an ion beam are also provided.
Abstract:
Example embodiments of the present invention provide a reflector for generating a neutral beam and a substrate processing apparatus including the same. The reflector may include at least one reflecting plate including a reflecting layer onto which an ion beam collides and a supporting layer. The reflecting layer may reflect and convert the ion beam into a neutral beam, and the supporting layer may reduce thermal deformation of the reflecting layer.
Abstract:
An ion beam apparatus includes a plasma chamber with a grid assembly installed at one end of the plasma chamber and a plasma sheath controller disposed between the plasma chamber and the grid assembly. The grid assembly includes first ion extraction apertures. The plasma sheath controller includes second ion extraction apertures smaller than the first ion extraction apertures. When the plasma sheath controller is used in this configuration, the surface of the plasma takes on a more planar configuration adjacent the controller so that ions, extracted from the plasma in a perpendicular direction to the plasma surface, pass cleanly through the apertures of the grid assembly rather than collide with the sidewalls of the grid assembly apertures. A semiconductor manufacturing apparatus and method for forming an ion beam are also provided.
Abstract:
Example embodiments of the present invention provide a reflector for generating a neutral beam and a substrate processing apparatus including the same. The reflector may include at least one reflecting plate including a reflecting layer onto which an ion beam collides and a supporting layer. The reflecting layer may reflect and convert the ion beam into a neutral beam, and the supporting layer may reduce thermal deformation of the reflecting layer.
Abstract:
In a method of forming a semiconductor cell structure, a first insulating layer may be formed on a semiconductor substrate. A connection pattern may be formed in the first insulating layer. Second and third insulating layers may be sequentially formed on the connection pattern. The third insulating layer may be etched at least twice and the second insulating layer may be etched at least once to form a through hole in the second and third insulating layers. The through hole may expose the connection pattern.
Abstract:
A method for manufacturing highly integrated NAND and NOR logic mask read only memory (MROM) devices is disclosed. Over the top surface of a semiconductor substrate, where a first polysilicon layer is formed, a pattern of a gate electrode is formed along a word line in the order of odd numbers or even numbers. Next, an insulation layer having a thickness of a submicron range is formed over the top surface of the substrate. And then a photoresist is covered and an etch back process is performed. Thereafter, the exposed insulation layer caused by the etch back process and the polysilicon layer are selectively etched to form a word line spacing corresponding to a thickness of the insulation layer. Thus, spacing between adjacent word lines can be minimized and a process margin can be sufficiently ensured.
Abstract:
A semiconductor device is manufactured by a method including processes of trimming and molding resist patterns. A resist layer formed on a substrate is exposed and developed to form the resist patterns. The resist patterns are trimmed using a first gas plasma to change the profiles of the resist patterns. Widths of the trimmed resist patterns are increased using a second gas plasma to form processed resist patterns.
Abstract:
In a method of forming a semiconductor cell structure, a first insulating layer may be formed on a semiconductor substrate. A connection pattern may be formed in the first insulating layer. Second and third insulating layers may be sequentially formed on the connection pattern. The third insulating layer may be etched at least twice and the second insulating layer may be etched at least once to form a through hole in the second and third insulating layers. The through hole may expose the connection pattern.
Abstract:
A conductive pattern on a substrate is formed. An insulating layer having an opening exposing the conductive pattern is formed. A bottom electrode is formed on the conductive pattern and a first sidewall of the opening. A spacer is formed on the bottom electrode and a second sidewall of the opening. The spacer and the bottom electrode are formed to be lower than a top surface of the insulating layer. A data storage plug is formed on the bottom electrode and the spacer. The data storage plug has a first sidewall aligned with a sidewall of the bottom electrode and a second sidewall aligned with a sidewall of the spacer. A bit line is formed on the data storage plug.
Abstract:
A semiconductor device is manufactured by a method including processes of trimming and molding resist patterns. A resist layer formed on a substrate is exposed and developed to form the resist patterns. The resist patterns are trimmed using a first gas plasma to change the profiles of the resist patterns. Widths of the trimmed resist patterns are increased using a second gas plasma to form processed resist patterns.