Abstract:
A field emission cathode plate is disclosed, which includes: a substrate; a cathode layer, disposed on the substrate; a conductive layer with an arc surface or a resistor layer with an opening and resistivity larger than that of the cathode layer, disposed on the cathode layer; and a cambered field emission layer, having an arc surface and disposed on the conductive layer or on the cathode layer in the opening of the resistor layer and covering the resistor layer around the opening. The present invention also provides a method for fabricating the above-mentioned field emission cathode plate. The method can provide field emission cathode plate achieving uniform field emission and does not involve high resolution and cost.
Abstract:
Disclosed is a method of fabricating carbon nanotubes and carbon nano particles, the method comprising: providing a plurality of carbon micro carriers on a silicon substrate; forming a plurality of carbon nano particles on the carbon micro carrier by a first gas; and reacting with a second gas to provide a plurality of carbon nanotubes. Thus the carbon nanotube can be formed without the use of a metal catalyst. The carbon nanotubes can easily separate from each other without the problem of non-uniformity, because the carbon micro carrier used is in a microscale size.
Abstract:
A method for manufacturing diamond-like carbon (DLC) film is disclosed. The method mainly includes steps of: (a) fixing a substrate in a reaction chamber; (b) pumping the pressure of the reaction chamber below 10−6 torr; (c) introducing at least a carbon-containing gas into the reaction chamber; and (d) depositing a diamond-like carbon film on the substrate by sputtering a graphite target. The deposited DLC film is in a shape of flakes. The appearance of the deposited DLC film on the surface of the substrate is in a rose-like shape. Moreover, the height of the deposited DLC film is of micrometer level, and the thickness of the deposited DLC film is of nanometer level. Since the aspect ratio of the deposited flake-shaped DLC film is high, the deposited DLC film can enhance the field emission.
Abstract:
A field emission device (FED) includes a top substrate having a fluorescent layer and an anode electrode, a bottom substrate, at least one cathode electrode having a platform and at least one protrusion, an insulating layer having an opening-pattern or groove-pattern, at least one gate layer located on the insulating layer, and an electron emitter located on the protrusion of the cathode electrode, where the electron emitter can act as side emission of electrons. Each of the platform and the protrusion have a height different from each other, and that the protrusion is located in the opening of the insulating layer. Through the structure illustrated above, uniformity of emitting electron density can be improved and brightness and contrast of color for the FED can be enhanced.