Abstract:
Methods of making an energy harvesting device are described. A case and integrated piezoelectric cantilever to harvest vibration energy from an environment being sensed is produced via a print forming method injection molding method. The cantilever device consists of a piezoelectric material member, and a proof mass of high density material coupled to the piezoelectric member. The print forming method is used to build up the base and walls of the device as well as the neutral layers of the piezoelectric member. Metal layers are printed to form the electrode layers of the piezoelectric member and the electrical contact portions of the device. Passive components can also be formed as part of the layers of the device. The entire assembly can be encapsulated in plastic.
Abstract:
A sensor device includes a housing base part, a bearer part, a chip structure situated on the bearer part, and a spring/damper combination via which the housing base part and the bearer part are elastically connected to one another. In the sensor device, the housing base part, the spring/damper combination and the bearer part are situated one over the other.
Abstract:
There are many inventions described and illustrated herein. In one aspect, the present invention is directed to a MEMS device, and technique of fabricating or manufacturing a MEMS device, having mechanical structures encapsulated in a chamber prior to final packaging. An embodiment further includes location of a piezoelectric material as part of a semiconductor sensing structure. The semiconductor sensing structure, in conjunction with the piezoelectric material, can be used as a sensing device to provide an output signal associated with a sensed event.
Abstract:
A component is provided for an impedance change in a coplanar waveguide which includes two grounding conductors and a signal line lying between the grounding conductors, as well as a conducting connecting element, which has a covering surface for the two grounding conductors and the signal line, and is electrically insulated, so that in each case a capacitor is formed. The connecting element and the lines are situated and arranged so that the respective capacitor between the grounding conductors and the connecting element has an invariable capacitance, but the capacitor between the connecting element and the signal line has a variable capacitance. A structure is also provided in which in an exactly opposite way, the respective capacitor between the grounding conductors and the connecting element has a variable capacitance, but the capacitor between the connecting element and the signal line has an invariable capacitance. Furthermore, a method for producing such a component is also provided.
Abstract:
A mechanical structure is disposed in a chamber, at least a portion of which is defined by the encapsulation structure. A first method provides a channel cap having at least one preform portion disposed over or in at least a portion of an anti-stiction channel to seal the anti-stiction channel, at least in part. A second method provides a channel cap having at least one portion disposed over or in at least a portion of an anti-stiction channel to seal the anti-stiction channel, at least in part. The at least one portion is fabricated apart from the electromechanical device and thereafter affixed to the electromechanical device. A third method provides a channel cap having at least one portion disposed over or in at least a portion of the anti-stiction channel to seal an anti-stiction channel, at least in part. The at least one portion may comprise a wire ball, a stud, metal foil or a solder preform. A device includes a substrate, an encapsulation structure and a mechanical structure. An anti-stiction layer is disposed on at least a portion of the mechanical structure. An anti-stiction channel is formed in at least one of the substrate and the encapsulation structure. A cap has at least one preform portion disposed over or in at least a portion of the anti-stiction channel to seal the anti-stiction channel, at least in part.
Abstract:
An electrical component is proposed, in particular a high-frequency microelectronic or microelectromechanical component having a base element that is provided with a feedthrough, a first conductive structure extending on an upper side of the base element being connected by the feedthrough, continuously for high-frequency electromagnetic waves, to a second conductive structure extending on a lower side of the base element. The feedthrough has the form of a right prism or cylinder, and the first and/or the second conductive structure is embodied as a planar waveguide, in particular as a coplanar waveguide. Also proposed is a method for producing an electrical component having a feedthrough for high-frequency electromagnetic waves through a base element, an electrically conductive layer being applied on an upper side of the base element and an etching mask being applied on a lower side of the base element; a trench, having at least almost perpendicular sidewalls and penetrating through the base element, then being etched into the base element in a plasma etching step; an electrically conductive layer being applied on the lower side after the etching and after removal of the etching mask; and the trench lastly being filled or lined with an electrically conductive material.
Abstract:
A capacitor with alterable capacitance for changing the impedance of a section of a coplanar waveguide, which may be used in particular as a high-frequency microswitch, is provided. A ground lead and a signal lead interrupted by an electroconductive connection which is self-supporting at least in some areas are provided, the capacitor including the electroconductive connection and an additional electroconductive connection connected to the ground lead. A structure connected to the electroconductive connection is provided, which is designed in such a manner that it reduces mechanical stresses which occurs in the electroconductive connection. An exemplary embodiment of the device provides for the electroconductive connection to be made of a material having coefficients of thermal expansion similar to that of silicon and a high modulus of elasticity compared to metals, in particular of molybdenum, tantalum or tungsten. The two exemplary embodiments may be combined.
Abstract:
A device including a capacitor system for varying the impedance of a section of a coplanar waveguide. The capacitance of the capacitor system is variable. The capacitor system includes a first electrically conductive connection, a second electrically conductive connection, and a third electrically conductive connection at least partially. The signal line of the section of the waveguide is interrupted over a predetermined length, the first connection connecting the ground lines of the waveguide, the second connection connecting the ground lines of the waveguide, and the third connection connecting the two parts of the interrupted signal line.
Abstract:
A tri-axis accelerometer includes a proof mass, at least four anchor points arranged in at least two opposite pairs, a first pair of anchor points being arranged opposite one another along a first axis, a second pair of anchor points being arranged opposite one another along a second axis, the first axis and the second axis being perpendicular to one another, and at least four spring units to connect the proof mass to the at least four anchor points, the spring units each including a pair of identical springs, each spring including a sensing unit.
Abstract:
A tri-axis accelerometer includes a proof mass, at least four anchor points arranged in at least two opposite pairs, a first pair of anchor points being arranged opposite one another along a first axis, a second pair of anchor points being arranged opposite one another along a second axis, the first axis and the second axis being perpendicular to one another, and at least four spring units to connect the proof mass to the at least four anchor points, the spring units each including a pair of identical springs, each spring including a sensing unit.