Abstract:
A sensor device includes a housing base part, a bearer part, a chip structure situated on the bearer part, and a spring/damper combination via which the housing base part and the bearer part are elastically connected to one another. In the sensor device, the housing base part, the spring/damper combination and the bearer part are situated one over the other.
Abstract:
A sensor module, in particular for measuring an acceleration or rotational speed, having a housing base body made of a plastic material, a lead frame extending through the housing base body and having leads which have connector pins for attachment to a circuit board, a sensor system having at least one sensor chip, the sensor system being in contact with the lead frame via conductor bonds, a cover, which is connected to the base body and at least one connector pin and is made of a conductive material. A simple construction having a high shielding effect is achieved due to the fact that the conductive cover is connected to the connector pin. The cover, a lid, for example, may be contacted directly via the connector pin together with the other connector pins when the components are mounted on the circuit board. The sensor module may be molded or may have a premolded housing. The edge or a contact of the cover may be welded, soldered, glued, or pressed to a ground lead of the lead frame.
Abstract:
A damping device for a micromechanical sensor device, having at least one first intermediate layer having at least two sections, a second section being situated around a first section, a lateral distance being provided between the first and the second section, and an elastic device being provided between the first section and the second section as an integral part of the first intermediate layer.
Abstract:
A sensor component having a housing and a sensor chip situated in it. The sensor chip is connected mechanically to the housing via at least one elastomer element. In addition, the sensor chip is also connected electrically to the housing via the at least one elastomer element.
Abstract:
A housing for an electrical circuit, in particular for a sensor, pins projecting from the housing for the electrical contacting of the circuit, additional pins being provided which are not connected electrically to the circuit but instead are used as mechanical arrangement for fastening the housing to a printed circuit board in particular. The present invention further relates to a housing having an electrical circuit, in particular a sensor, pins projecting from the housing for the electrical contacting of the circuit, at least two pins being connected to one another mechanically via a connecting piece.
Abstract:
A sensor device includes a housing base part, a bearer part, a chip structure situated on the bearer part, and a spring/damper combination via which the housing base part and the bearer part are elastically connected to one another. In the sensor device, the housing base part, the spring/damper combination and the bearer part are situated one over the other.
Abstract:
A method and the associated device for attaching at least one micromechanical chip in a housing which is optically transparent to radiation of at least one predefined transmission wavelength, in which an adhesive layer is applied between the chip and the housing and the adhesive layer is irradiated through the housing using radiation of the transmission wavelength for the purpose of curing.
Abstract:
The invention relates to a device and method for determining parameters of a welding system. According to the invention, a welding area (18, 21, 22) is subjected to the action of ultrasonic waves, preferably to the action of shear waves, by using an ultrasound source (14). During a first welding process (n1), a signal processing (30) determines a first ultrasonic permeability (Dn1) from a received ultrasonic signal (UE). During at least one subsequent welding process (n2), a second ultrasonic permeability (Dn2) is determined from an ultrasonic signal (UE) that is received during a renewed exposure of the welding area (18, 21, 22) to ultrasonic waves. A display (32) and/or a diagnostic function and/or a correction of control quantities of the welding system is/are carried out as a function of the at least two ultrasonic permeabilities (Dn1, Dn2).
Abstract:
A sensor component having a housing and a sensor chip situated in it. The sensor chip is connected mechanically to the housing via at least one elastomer element. In addition, the sensor chip is also connected electrically to the housing via the at least one elastomer element.
Abstract:
A damping device for a micromechanical sensor device, having at least one first intermediate layer having at least two sections, a second section being situated around a first section, a lateral distance being provided between the first and the second section, and an elastic device being provided between the first section and the second section as an integral part of the first intermediate layer.