Abstract:
A thermal electron emission backlight unit includes: first and second substrates arranged parallel to each other; first and second anode electrodes respectively arranged on inner surfaces between the first and second substrates; wall frames adapted to seal an inner space between the first and second substrates; a movable spacer holder and a fixed spacer holder arranged inside the wall frames to face each other; a plurality of spacers arranged between the first and second substrates and adapted to maintain a gap therebetween, wherein ends of the spacers are coupled to the movable and fixed spacer holders; a plurality of cathode electrodes arranged across the spacers between the first and second substrates; and a phosphor layer arranged on the second anode electrode. The spacers include tension spacers adapted to provide tension between the movable and fixed spacer holders by pushing the movable spacer holder away from the fixed spacer holder. The first substrate is adapted to pass white light therethrough.
Abstract:
A field emission backlight device may include a first substrate and a second substrate separate from and roughly parallel to each other, a first anode electrode and a second anode electrode that face each other on inner surfaces of the first substrate and the second substrate, and cathode electrodes separate from and roughly parallel to one another between the first substrate and the second substrate. It may also include electron emission sources disposed on the cathode electrodes to emit electrons by an electric field and a phosphorous layer disposed on the first anode electrode or the second anode electrode.
Abstract:
A field emission display device and a field emission type backlight device having a sealing structure for a vacuum exhaust are provided. The field emission display device is constructed with a cathode substrate and an anode substrate attached to each other and facing each other and a vacuum-exhausted panel space formed therebetween to generated a visual image. Also, the field emission display device is constructed with a sealing member disposed along edges of the cathode substrate and the anode substrate to seal the panel space. At least one inlet exposed to the panel space and an exhaust passage through which the inlet communicates with an outside of the field emission display device are formed in the sealing member. The field emission display device and the field emission type backlight device according to the present invention has a reduced number of manufacturing processes and is suitable for a compact, slim and lightweight design, and a large screen by having the sealing structure for the vacuum exhaust.
Abstract:
A field emission backlight device may include a first substrate and a second substrate separate from and roughly parallel to each other, a first anode electrode and a second anode electrode that face each other on inner surfaces of the first substrate and the second substrate, and cathode electrodes separate from and roughly parallel to one another between the first substrate and the second substrate. It may also include electron emission sources disposed on the cathode electrodes to emit electrons by an electric field and a phosphorous layer disposed on the first anode electrode or the second anode electrode.
Abstract:
A field emission backlight unit includes: upper substrate and lower substrate separated from each other and facing each other; an anode formed on a bottom surface of the upper substrate; a phosphor layer formed on a bottom surface of the anode; a plurality of cathodes and gate electrodes alternately formed on a top surface of the lower substrate; and emitters formed on the cathodes; the gate electrodes include first gate electrodes formed of a conductive material on the top surface of the lower substrate and second gate electrodes having a greater thickness than that of the first gate electrodes and formed on a top surface of the first gate electrodes.
Abstract:
A sealing structure for a field emission display (FED) device and a method of manufacturing the same is provided. The sealing structure includes an upper substrate, a lower substrate, spacers, and a frit, wherein at least one exhaust outlet is formed in the frit. The method of manufacturing the sealing structure of the FED device prepares a lower substrate and an upper substrate, installs a frit having at least one exhaust outlet between the lower substrate and the upper substrate, and heats the lower substrate and the upper substrate while arranging the upper substrate on the lower substrate at a predetermined temperature to melt the frit in order to seal the space between the lower substrate and the upper substrate. Inner gas can be easily exhausted and the inside of the FED is reliably sealed while preventing damages of the spacers.
Abstract:
A Field Emission Display (FED) includes: an anode plate having an anode electrode and a fluorescent layer arranged therein; a cathode plate having an electron emission source and a gate electrode arranged therein, the electron emission source facing the fluorescent layer and adapted to emit electrons and the gate electrode having a gate hole adapted to pass the electrons therethrough; a mesh grid arranged within the cathode plate, the mesh grid having an electron beam control hole corresponding to the gate hole and having a photosensitive adhesion layer on a surface facing the cathode plate; and a spacer provided between the anode plate and the mesh grid and adapted to closely adhere the mesh grid to the cathode plate by a negative pressure between the anode plate and the cathode plate.
Abstract:
A spacer supporting structure includes: a plurality of bar-shaped spacers adapted to maintain a gap between two panels; a first supporting member adapted to fix an end part of the spacer, the first supporting member being arranged on an edge of one of the two panels; a second supporting member arranged on another edge of the one of the two panels; and a plurality of elastic members arranged on the second supporting member, the plurality of elastic members adapted to apply a tensile force to the respective spacers by being coupled to the second ends of the spacers.
Abstract:
A sealing structure for a field emission display (FED) device and a method of manufacturing the same is provided. The sealing structure includes an upper substrate, a lower substrate, spacers, and a frit, wherein at least one exhaust outlet is formed in the frit. The method of manufacturing the sealing structure of the FED device prepares a lower substrate and an upper substrate, installs a frit having at least one exhaust outlet between the lower substrate and the upper substrate, and heats the lower substrate and the upper substrate while arranging the upper substrate on the lower substrate at a predetermined temperature to melt the frit in order to seal the space between the lower substrate and the upper substrate. Inner gas can be easily exhausted and the inside of the FED is reliably sealed while preventing damages of the spacers.
Abstract:
A spacer supporting structure includes: a plurality of bar-shaped spacers adapted to maintain a gap between two panels; a first supporting member adapted to fix an end part of the spacer, the first supporting member being arranged on an edge of one of the two panels; a second supporting member arranged on another edge of the one of the two panels; and a plurality of elastic members arranged on the second supporting member, the plurality of elastic members adapted to apply a tensile force to the respective spacers by being coupled to the second ends of the spacers.