Abstract:
A portion of compliant material includes four walls defining a slot. The slot has a relatively large cross-section end in fluid communication with a solder reservoir, and also has a relatively small cross-section end opposed to the relatively large cross-section end. The slot has a generally elongate rectangular shape when viewed in plan, with a length perpendicular to a scan direction, a width, parallel to the scan direction, associated with the relatively large cross section end, and a width, parallel to the scan direction, associated with the relatively small cross section end. The slot is configured in the portion of compliant material such that the relatively small cross-section end of the slot normally remains substantially closed, but locally opens sufficiently to dispense solder from the reservoir when under fluid pressure and locally unsupported by a workpiece. Methods of operation and fabrication are also disclosed.
Abstract:
A process for aligning at least two layers in an abutting relationship with each other comprises forming a plurality of sprocket openings in each of the layers for receiving a sprocket of diminishing diameters as the sprocket extends outwardly from a base, with the center axes of the sprocket openings in each layer being substantially alignable with one another, the diameter of the sprocket openings in an abutting layer for first receiving the sprocket being greater than the diameter of the sprocket openings in an abutted layer. This is followed by forming a plurality of reservoir openings in each of at least two of the layers and positioning the sprocket openings in the layers to correspond with one another and the reservoir openings in the layers to correspond with one another so that substantial alignment of the center axes of the corresponding sprocket openings in the layers effects substantial alignment of the center axes of the corresponding reservoir openings in the layers. Engaging the sprocket openings with the sprocket by inserting the end of the sprocket having the smallest diameter into the sprocket openings having the largest diameter in the layers and continuing through to the sprocket opening having the smallest diameter in the layers effects substantial alignment of the center axes of the corresponding sprocket openings and substantial alignment of the center axes of the corresponding reservoir openings in the layers. The invention also comprises apparatus-for performing this process.
Abstract:
A method for fine positioning a component through the use of fusible elements having two or more melting points so as to establish intermediate displacements between totally melted fusible elements and unmelted fusible elements. Because of the use of non-eutectic fusible materials, fine adjustments in the displacement may be achieved.
Abstract:
A semiconductor solder bump structure having a solder bump with at least a first solder and a second solder attached to the first solder, producing one solder bump having at least two different solders with different melting temperatures. A method of fabricating the solder is included.
Abstract:
An electrical interconnect forming method. The electrical interconnect includes a first substrate comprising a first electrically conductive pad, a second substrate comprising a second electrically conductive pad, and an interconnect structure electrically and mechanically connecting the first electrically conductive pad to the second electrically conductive pad. The interconnect structure comprises a non-solder metallic core structure, a first solder structure, and a second solder structure. The first solder structure electrically and mechanically connects a first portion of the non-solder metallic core structure to the first electrically conductive pad. The second solder structure electrically and mechanically connects a second portion of the non-solder metallic core structure to the second electrically conductive pad.
Abstract:
An electrical interconnect forming method. The electrical interconnect includes a first substrate comprising a first electrically conductive pad, a second substrate comprising a second electrically conductive pad, and an interconnect structure electrically and mechanically connecting the first electrically conductive pad to the second electrically conductive pad. The interconnect structure comprises a non-solder metallic core structure, a first solder structure, and a second solder structure. The first solder structure electrically and mechanically connects a first portion of the non-solder metallic core structure to the first electrically conductive pad. The second solder structure electrically and mechanically connects a second portion of the non-solder metallic core structure to the second electrically conductive pad.
Abstract:
A system and method for injection molding conductive bonding material into a plurality of cavities in a non-rectangular mold is disclosed. The method comprises aligning a fill head with a non-rectangular mold. The non-rectangular mold includes a plurality of cavities. The fill head is placed in substantial contact with the non-rectangular mold. Rotational motion is provided to at least one of the non-rectangular mold and the fill head while the fill head is in substantial contact with the non-rectangular mold. Conductive bonding material is forced out of the fill head toward the non-rectangular mold. The conductive bonding material is provided into at least one cavity of the plurality of cavities contemporaneous with the at least one cavity being in proximity to the fill head.
Abstract:
A method for fine positioning a component through the use of fusible elements having two or more melting points so as to establish intermediate displacements between totally melted fusible elements and unmelted fusible elements. Because of the use of non-eutectic fusible materials, fine adjustments in the displacement may be achieved.
Abstract:
A tool and method is provided for repositioning a solder injection head. The tool includes a first moveable platform positioned on a first side of a workpiece chuck and a second moveable platform positioned on a second side of the workpiece chuck. A solder injection head has a seal configured to seal molten solder within the solder injection head when contacting a surface of the first moveable platform or the second moveable platform. The method includes moving a workpiece chuck and a starting platform to a position such that the starting platform is at a finishing position and a finishing platform is in a starting position.
Abstract:
Improved interconnects are produced by injection molded solder which fills mold arrays with molten solder so that columns that have much greater height to width aspect ratios greater than one are formed, rather than conventional flip chip bumps. The columns may have filler particles or reinforcing conductors therein. In the interconnect structures produced, the cost and time of a subsequent underfill step is reduced or avoided. The problem of incompatibility with optical interconnects between chips because underfills require high loading of silica fillers which scatter light, is solved, thus allowing flip chips to incorporate optical interconnects.