Abstract:
The present invention provides a selective coating of an endodontic file, in which the distal end of the file is uncoated or alternatively leaving the outermost part of the blades of the distal end portion uncoated. The distribution of the nanoparticles is thus non uniform along the surface of the file leaving only a part of the file coated. In the present invention, the distal end of the device being subjected to the highest torque is either uncoated at all, or has a coated core and uncoated blades.
Abstract:
A lubricating and shock absorbing materials are described, which are based on nanoparticles having the formula A1-x-Bx-chalcogenide. Processes for their manufacture are also described.
Abstract:
The present invention is related to an apparatus for the production of inorganic fullerene-like (IF) nanoparticles and nanotubes. The apparatus comprises a chemical reactor, and is further associated with a feeding set up and with a temperature control means for controlling the temperature along the reaction path inside the reactor so as to maintain the temperature to be substantially constant. The invention is further directed to a method for the synthesis of IF-WO3 nanoparticles having spherical shape and having a size up to 0.5 mu m and nanotubes having a length of up to several hundred mu m and a cross-sectional dimension of up to 200 nanometer.
Abstract:
The present invention provides an article, at least part of it being coated by inorganic fullerene-like (IF) nanoparticles or composite containing such nanoparticles. Preferably, the invention provides an article made of metal, for use in dentistry or medicine e.g. archwire, needle or catheter, having a friction-reducing film, and methods for coating such articles with a friction-reducing film.
Abstract:
The present invention provides a new composite material comprising a porous matrix made of metal, metal alloy or semiconducting material and hollow fullerene-like nanoparticles of a metal chalcogenide compound or mixture of such compounds. The composite material is characterized by having a porosity between about 10% and about 40%. The amount of the hallow nanoparticles in the composite material is 1-20 wt. %.
Abstract:
A method of preparing a polycrystalline thin film of a transition metal chalcogenide of an orientation on a substrate which includes (a) depositing a layer of a transition metal material or mixtures thereof on the substrate; and (b) heating the layer in an open system in a gaseous reducing atmosphere containing one or more chalcogen materials for a time sufficient to allow the transition metal material and the chalcogen material to react and form the oriented polycrystalline thin film, the thin film being substantially exclusively oriented in the orientation. Also provided is a method of synthesizing structures of a transition metal chalcogenide selected from the group consisting of single layer or nested or stuffed inorganic fullerenes and nanotubes, including the step of reacting a transition metal compound with a volatile chalcogen compound in a reducing atmosphere at a temperature between about 750.degree. C. and about 1000.degree. C.
Abstract:
A nanostructure, being either an Inorganic Fullerene-like (IF) nanostructure or an Inorganic Nanotube (INT), having the formula A1−x-Bx-chalcogenide are described. A being a metal or transition metal or an alloy of metals and/or transition metals, B being a metal or transition metal B different from that of A and x being ≦0.3. A process for their manufacture and their use for modifying the electronic character of A-chalcogenide are described.
Abstract:
A nanostructure, being either an Inorganic Fullerene-like (IF) nanostructure or an Inorganic Nanotube (INT), having the formula A1−x-Bx-chalcognide are described. A being a metal or transition metal or an alloy of metals and/or transition metals, B being a metal or transition metal B different from that of A and x being ≦0.3. A process for their manufacture and their use for modifying the electronic character of A-chalcognide are described.
Abstract:
The present invention provides a process for obtaining fullerene-like metal chalcogenide nanoparticles, comprising feeding a metal precursor (INi) selected from metal halide, metal carbonyl, organo-metallic compound and metal oxyhalide vapor into a reaction chamber (12) towards a reaction zone to interact with a flow of at least one chalcogen material (IN2) in gas phase, the temperature conditions in said reaction zone being such to enable the formation of the fullerene-like metal chalcogenide nanoparticles product. The present invention further provides novel IF metal chalcogenides nanoparticles with spherical shape and optionally having a very small or no hollow core and also exhibiting excellent tribological behavior. The present invention further provides an apparatus for preparing various IF nanostructures.
Abstract:
A process and apparatus are presented for obtaining inorganic fullerene-like nanostructures. A metal oxide is evaporated at predetermined temperature conditions, and is swept towards a reacting zone, to which first and second gas phase reacting agents are concurrently swept. The evaporated metal oxide thus interacts with the first reacting agent and is converted into metal suboxide nanoparticles in the gas phase. The condensing metal suboxide nanoparticles interact with the second reacting agent in the gas phase resulting in substantially pure phase of the inorganic fullerene-like nanoparticles.