Abstract:
This invention is directed to security features that are formed, created, printed from inks comprising metallic particles and/or metallic nanoparticles. Preferably, the security feature is a reflective security features that comprises metallic nanoparticles where the reflective security features are formed by a direct-writing process, e.g., an ink jet printing process, using an ink comprising metallic nanoparticles. The invention is also directed to the use of these security features in many applications and to processes for making them.
Abstract:
Compositions and methods for the manufacture of electrodes for fuel cells. The compositions and methods are particularly useful for the manufacture of anodes and cathodes for proton exchange membrane fuel cells, particularly direct methanol fuel cells. The methods can utilize direct-write tools to deposit ink compositions and form functional layers of a membrane electrode assembly having controlled properties and enhanced performance.
Abstract:
Energy devices such as batteries and methods for fabricating the energy devices. The devices are small, thin and lightweight, yet provide sufficient power for many handheld electronics.
Abstract:
Energy devices such as batteries and methods for fabricating the energy devices. The devices are small, thin and lightweight, yet provide sufficient power for many handheld electronics.
Abstract:
Electrodes and electrocatalyst layers incorporating modified carbon products. The modified carbon products may advantageously enhance the properties of an electrode or electrode layer, leading to more efficiency within the a fuel cell or similar device.
Abstract:
Anodized electroplated aluminum structures and methods for making the same are disclosed. Cosmetic structures according to embodiments of the invention are provided by electroplating a non-cosmetic structure with aluminum and then anodizing the electroplated aluminum. This produces cosmetic structures that may possess desired structural and cosmetic properties and that may be suitable for use as housing or support members of electronic devices.
Abstract:
A method and apparatus for bonding a first substrate to a second substrate can include an intermediate layer disposed between the substrates. In one embodiment, the intermediate layer can be disposed to a bonding area of the first substrate and only one adhesive layer can be disposed between the intermediate layer and the second substrate. In other embodiments, a plurality of intermediate layers can be used.
Abstract:
Described herein are methods of controlling metal nanowire morphologies by adjusting the reaction conditions of a polyol synthesis. In particular, by purging the reaction with an inert gas, batch-to-batch consistency can be achieved.
Abstract:
This invention is directed to direct write printed reflective features comprising metallic particles and/or metallic nanoparticles. Preferably, the reflective feature are formed by a direct-writing printing process, e.g., a piezo-electric, thermal, drop-on-demand or continuous ink jet printing process, using an ink comprising metallic particles, e.g., metallic nanoparticles. The invention is also directed to inks suitable for printing such reflective features using a direct write printing process and to processes for making such reflective features.
Abstract:
Composite particles comprising inorganic nanoparticles disposed on a substrate particle and processes for making and using same. A flowing aerosol is generated that includes droplets of a precursor medium dispersed in a gas phase. The precursor medium contains a liquid vehicle and at least one precursor. At least a portion of the liquid vehicle is removed from the droplets of precursor medium under conditions effective to convert the precursor to the nanoparticles on the substrate and form the composite particles.