Abstract:
A system and a method as defined herein for scan interrogation of, for example, a label-independent-detection (LID) biosensor, such as for monitoring a surface change or an event on a biosensor for use, for example, in microplate image analysis.
Abstract:
A system and a method as defined herein for scan interrogation of, for example, a label-independent-detection (LID) biosensor, such as for monitoring a surface change or an event on a biosensor for use, for example, in microplate image analysis.
Abstract:
Filter gratings are formed in optical waveguides having photosensitive cores by exposing the cores to actinic radiation in the form of interfering beams having peak intensities that are relatively displaced along an optical axis of the waveguides. Each of the interfering beams has a single-lobed intensity profile and a degree of spatial coherence required to achieve a desired fringe contrast between the two relatively displaced beams. Index modulations in the photosensitive core match the illumination (interference) pattern of the radiation. The relative displacement of the interfering beams reduces side lobes of the gratings' spectral responses by leveling the average refractive index of the index modulations. A second exposure with the two beams but without the beams' interference effects further levels the average refractive index.
Abstract:
Packages for long period fiber gratings and other optical components (and methods for forming the packages) are described. According to an aspect of the invention, a hollow tube surrounding an optical fiber containing a long-period grating is collapsed in two areas, forming a seal at each end of the tube. According to another aspect of the invention, a hollow tube with a shelf section at each end surrounds an optical fiber containing a long-period grating. The hollow tube is sealed at each end with a fused frit. According to another aspect of the invention, a hollow tube surrounding an optical fiber containing a long-period grating is sealed at each end with a glass plug.
Abstract:
A single-mode optical waveguide fiber designed to limit power penalty due to four wave mixing and a method of making the waveguide is disclosed. Variations in properties, e.g., radius or refractive index, of the waveguide fiber core provide a total dispersion which varies along the length of the waveguide. The algebraic sum of products of length times total dispersion is controlled to a pre-selected value for each waveguide fiber which makes up a system link Proper choice of total dispersion variation magnitude and sub-length results in a system link wherein a signal travels only short distances in waveguide portions having total dispersion near zero. However, the variation of the total dispersion provides a system link which has a pre-selected dispersive effect on the signal over a selected wavelength range. The dispersive effect on the signal can be chosen to be essentially zero. A number of techniques for fabricating DM fiber are also disclosed.
Abstract:
Apparatus for forming a refractive index grating in a waveguide in accordance with the invention includes a waveguide formed from a material that changes its index of refraction when exposed to a beam of optical radiation, a source of coherent optical radiation for forming a beam of radiation, a mirror arranged to intercept a first part of a beam and to reflect the first part of the beam through an angle, and a phase delay plate arranged to intercept a second part of the beam for delaying the second part of the beam propagating through the plate, in which the mirror and the phase delay plate are arranged so that the first part of the beam and the second delayed part of the beam form an interference pattern on the waveguide for changing the index of refraction of the waveguide, in a pattern corresponding to the interference pattern for forming an index grating in the waveguide.
Abstract:
A multi-channel swept wavelength optical interrogation system and a method are described herein that enable the interrogation of one or more biosensors which for example could be located within the wells of a microplate. In one embodiment, the optical interrogation system comprises: (a) a tunable laser that emits an optical beam which has a predetermined sequence of distinct wavelengths over a predetermined time period; (b) a distribution unit that splits the optical beam into a plurality of interrogation beams; (c) an array of optical interrogation units that receive and direct the interrogation beams towards an array of biosensors; (d) the array of optical interrogation units receive a plurality of reflected interrogation beams from the array of biosensors; (e) a data processing device that receives and processes information associated with the reflected interrogation beams to determine for example whether or not there was a biochemical interaction on anyone of the biosensors.
Abstract:
An optical interrogation system and a method are described herein that enable the interrogation of one or more biosensors which can be located within the wells of a microplate. In one embodiment, the optical interrogation system has a tunable laser, N-fiber launches, N-lenses and N-detectors that are set-up to interrogate N-biosensors. In another embodiment, the optical interrogation system has a tunable laser, N-fiber launches, N+1 lenses and N-detectors that are set-up to interrogate N-biosensors.
Abstract:
The disclosure relates to a system and a method for light beam interrogation of an optical biosensor and for monitoring a biological event on the biosensor for use, for example, in microplate image analysis. The system and method correct pointing-errors that can be encountered, for example, in scanning label-independent-detection biosensor applications.
Abstract:
A Mach-Zehnder filter is provided with a strongly aperiodic transfer function including a broad, sharply defined pass band. The filter can be used in conjunction with optical amplifiers.