Abstract:
A socket connector includes a housing having a mating interface configured to mate with an electronic component and a mounting interface configured to mount to a circuit board. Signal contacts are held by the housing and extend between the mating interface and the mounting interface. Power contacts are held by the housing and extend between the mating interface and the mounting interface. The power contacts are configured to transmit power from the circuit board to the electronic component. Each of the power contacts have at least one commoning element. A metallic power plate is coupled to the commoning elements of a plurality of the power contacts to electrically common the power contacts to one another.
Abstract:
A connector assembly includes a housing and substantially identical contacts. The housing is configured to mate with a mating connector. The contacts are arranged in a plurality of sets in the housing. The contacts are configured to electrically couple with the mating connector. Each set of contacts is arranged to communicate a different type of data signal with the mating connector. Optionally, the contacts are formed as substantially identical pins. The different sets of contacts may concurrently communicate the different types of data signals.
Abstract:
An arrangement whereby a passive line concentrator (100) can be connected in a managed token ring network includes a special concentrator port (200) in an active concentrator (10) which is adapted to have inserted the ring-in port (130) of the passive line concentrator. The special concentrator port of the active concentrator supplies a small phantom current to the passive concentrator, which returns the phantom current only if it has at least one active port. Detection of the returned phantom current controls insertion of the special concentrator port into the network.
Abstract:
A connector assembly includes a housing and substantially identical contacts. The housing is configured to mate with a mating connector. The contacts are arranged in a plurality of sets in the housing. The contacts are configured to electrically couple with the mating connector. Each set of contacts is arranged to communicate a different type of data signal with the mating connector. Optionally, the contacts are formed as substantially identical pins. The different sets of contacts may concurrently communicate the different types of data signals.
Abstract:
A connector assembly includes a housing and substantially identical contacts. The housing is configured to mate with a mating connector. The contacts are arranged in a plurality of sets in the housing. The contacts are configured to electrically couple with the mating connector. Each set of contacts is arranged to communicate a different type of data signal with the mating connector. Optionally the contacts are formed as substantially identical pins. The different sets of contacts may concurrently communicate the different types of data signals.
Abstract:
An electrical connector assembly couples a circuit board with at least one of a motherboard and a backplane board. The connector assembly includes a connector and a flexible circuit member. The connector has a mating interface and a mounting interface. The mating interface electrically couples the connector with the circuit board. The mounting interface secures the connector to the motherboard. The flexible circuit member electrically interconnects the mating and mounting interfaces with one another and with at least one of the motherboard and the backplane board. The flexible circuit member electrically interconnects the circuit board with the backplane board via a conductive pathway that bypasses the motherboard.
Abstract:
An electrical contact includes a conductor extending along a length between a tail and a tip. The conductor has a front mating interface configured to be engaged by a mating component such that the conductor is deflected rearwardly by the mating component. A mechanical support beam is disposed along a rear of the conductor and is configured to provide mechanical support for the conductor to resist rearward deflection of the conductor. Electrical conductivity of the conductor is greater than electrical conductivity of the mechanical support beam. Mechanical strength of the mechanical support beam is greater than mechanical strength of the conductor. Optionally, a flexible substrate may be provided between the conductor and the mechanical support beam, where the conductor has a length that extends along at least a portion of the length of the conductor. The flexible substrate may have first and second sides with the first side being secured to the conductor and the second side being secured to the mechanical support beam.
Abstract:
A high speed signal connector having a plurality of signal conductors disposed within the housing and a ground bus or plane disposed within the housing and including a plurality of coextensive layers of different conductive materials including at least a first conductive base layer having predetermined conductivity and permeability and a second conductive top layer have predetermined conductivity and permeability. A multiple layer common ground provides for improved current flow within the common ground so as to minimize cross talk between signal contacts. As a result, the present invention provides a connector for high frequency signal transmission which exhibits an attenuation characteristic which is substantially independent of frequency within a predetermined and selectable frequency range and which permits the tailoring of the attenuation and phase response of the connector as a function of frequency.
Abstract:
A pluggable connector that includes a connector housing having mating and loading ends and a longitudinal axis extending therebetween. The connector housing includes an insert cavity that opens to the mating end. The pluggable connector also includes a plug insert that is disposed within the insert cavity. The plug insert has an air core that extends in a direction along the longitudinal axis. The pluggable connector also including first and second differential pairs that extend along the longitudinal axis through the plug insert. Each of the first and second differential pairs includes two mating contacts that extend parallel to each other. The air core is located directly between the first and second differential pairs to control the electromagnetic coupling between the first and second differential pairs.
Abstract:
A flexible circuit is provided. The flexible circuit includes a circuit board mating end and a flexible body extending from the circuit board mating end. A conductive pathway extends through the flexible body to electrically couple circuit boards. A connector pad is positioned on the circuit board mating end. The conductive pathway electrically engages the connector pad. The connector pad is configured to electrically couple the flexible circuit to one of the circuit boards. A layer of uncured material extends between the connector pad and the conductive pathway. The layer of uncured material increases an impedance of the connector pad.