Abstract:
A backlight assembly includes a light-generating unit, a heat-radiation member, a first receiving container, and a second receiving container. The heat-radiation member is disposed under the light-generating unit and radiates heat generated by the light-generating unit. The first receiving container is composed of a bottom portion and side portion extended from the bottom portion. The first receiving container has an opening formed through partial removal of the bottom portion so that the heat-radiation member received inside is exposed. The second receiving container is disposed under the first receiving container. An air layer is formed in between the first and second receiving containers.
Abstract:
The present invention relates to a light emitting diode module, as well as a backlight assembly and a display device including the same. The light emitting diode module according to an exemplary embodiment of the present invention includes a printed circuit board having a plurality of junction holes, a plurality of light emitting diodes having a light emitting portion for emitting light and a lead portion with one end electrically connected to the light emitting portion and the other end positioned in a corresponding junction hole, and a junction member filled in the corresponding junction hole in which the lead portion is positioned.
Abstract:
A liquid crystal display according to the present invention comprises a first panel, a second panel facing the first panel, a liquid crystal layer disposed between the first panel and the second panel, and a polarizing film, wherein the polarizing film includes electrically conductive particles (e.g., carbon nanotubes or carbon nanofibers) and reflects a first polarization component parallel to the alignment direction of the electrically conductive particles and transmits a second polarization component perpendicular to the alignment direction of the electrically conductive particles.
Abstract:
A backlight unit comprises an arrangement surface and a plurality of point light sources arranged on the arrangement surface, wherein the arrangement surface is divided into an array of hexagonal cells, a plurality of the cells comprising a white light providing unit. An LCD comprising a backlight unit on which a point light source is efficiently disposed and an efficient arrangement method of a point light source are provided.
Abstract:
An optical unit includes a base, a light-condensing member disposed on the base to condense a first portion of light that is incident onto the base and protrusion members disposed on a surface of the light-condensing member to scatter a second portion of the light that is incident onto the base. A backlight assembly includes light sources, an optical unit receiving light from the light sources to condense and scatter the light, and may also include an optical member disposed over the optical unit to enhance the front luminance of the light. A display device includes light sources, an optical module and a display panel. Thus, display quality of the display device may be enhanced.
Abstract:
An optical module includes a point light source device and an optical lens. The point light source device generates light. The optical lens includes an inner curved surface and an outer curved surface. The inner curved surface has a first roughly ellipsoidal shape having a first major axis and a first minor axis that is substantially perpendicular to the first major axis. The outer curved surface has a second roughly ellipsoidal shape having a second major axis that is substantially perpendicular to the first axis and the second minor axis that is substantially perpendicular to the second major axis. The light generated by the point light source device enters the optical lens through the inner curved surface and exits from the optical lens through the outer curved surface. Therefore, the number of optical modules used in a display device may be reduced to lower manufacturing cost thereof.
Abstract:
A flat-type fluorescent lamp and liquid crystal display having minimum pin-shaped holes include a first substrate, a second substrate forming a plurality of discharging spaces together with the first substrate, and external electrodes that cover the outer edge surfaces of the first and the second substrates while perpendicularly extending across the discharging spaces. The second substrate is substantially as thick as the first substrate, especially at the position covered by the external electrodes.
Abstract:
A flat fluorescent lamp includes a lamp body having a plurality of discharge spaces, an external electrode that is formed at both ends of the lamp body and intersects the discharge spaces, and an auxiliary electrode coupled to the lamp body and electrically connected to the external electrode. The external electrode includes a main electrode portion intersecting the discharge spaces and a first compensation electrode portion extending from the main electrode portion such that the first compensation electrode portion is formed at the outermost discharge spaces of the discharge spaces. The auxiliary electrode is formed at the outermost discharge spaces where the first compensation electrode portion is formed. Thus, a pin-hole defect of the flat fluorescent lamp may be prevented.
Abstract:
A flat-type fluorescent lamp includes a body having a plurality of discharge spaces, an electrode part disposed inside the body and crossing each of the discharge spaces and a light generating part generating a visible light by using the emitted electron. The electrode part includes an electron-transporting electrode transporting electrons from an exterior and an electron-emitting electrode on the transporting electrode to activate emission of the electrons to the discharge spaces. The flat-type fluorescent lamp has high brightness and low power consumption.
Abstract:
A flat fluorescent lamp includes a first substrate, a second substrate combined with the first substrate to define a plurality of discharge spaces, and a first external electrode formed on the outer surface of the second substrate to cross the discharge spaces. A first region of the second substrate corresponding to an outermost discharge space has a thickness thinner than that of a second region of the second substrate corresponding to remaining discharge spaces not disposed outermost. Thus, the outermost discharge space may have a compensated luminance, thereby improving luminance uniformity of light emitted from the flat fluorescent lamp and display quality of the liquid crystal display device including the flat fluorescent lamp.