Abstract:
An anion exchange membrane is composed of a copolymer of 1,1-diphenylethylene and one or more styrene monomers, such as 4-tert-butylstyrene. The copolymer includes a backbone substituted with a plurality of ionic groups coupled to phenyl groups on the backbone via hydrocarbyl tethers between about 1 and about 7 carbons in length. High-temperature conditions enabled by these copolymers enhance conductivity performance, making them particularly suitable for use in anion exchange membranes in fuel cells, electrolyzers employing hydrogen, ion separations, etc. The properties of the membranes can be tuned via the degree of functionalization of the phenyl groups and selection of the functional groups, such as quaternary ammonium groups. Several processes can be used to incorporate the desired ionic functional groups into the polymers, such as chloromethylation, radical bromination, Friedel-Crafts acylation and alkylation, sulfonation followed by amination, or combinations thereof.
Abstract:
In a wireless multi-hop network, a transmission scheduling apparatus calculates a transmission demand of every node within the wireless multi-hop network, and allocates a time slot to each node by using the transmission demand of each node.
Abstract:
Disclosed is a light emitting device array. The light emitting device array comprises a light emitting device and a body comprises first and second lead frames electrically connected to the light emitting device and a substrate on which the light emitting device package is disposed, the substrate comprises a base layer and a metal layer disposed on the base layer and electrically connected to the light emitting device package, wherein the metal layer comprises first and second electrode patterns electrically connected to the first and second lead frames and a heat dissipation pattern insulated from at least one of the first or(and) second electrode patterns, absorbing heat generated from at least one of the base layer or(and) the light emitting device package and then dissipating the heat.
Abstract:
When supporting the handover from first road side equipment of a plurality of sets of road side equipment and second road side equipment that is adjacent to the first road side equipment to a vehicle, the first road side equipment generates a first channel seizing signal that is longer than that of the second road side equipment in a control channel of an N-th sync interval. The second road side equipment generates a second channel seizing signal that is longer than that of the first road side equipment in a control channel of an (N+1)-th sync interval.
Abstract:
A secondary battery is provided with a safety vent that can decrease the increased inner pressure of the secondary battery by being rapidly fractured when the inner pressure of the secondary battery is increased over a predetermined value. The secondary battery is constructed with a sealed outer case forming a receiving space in an inner side, an electrode assembly received in the receiving space of the outer case, a safety vent formed on one surface of the outer case, and a fracture induction part formed on the surface of the outer case and disposed at a portion of a circumference region of the safety vent. The fracture induction part is relatively thinner than the other portion of the surface of the outer case.
Abstract:
In order for a source node including a vehicle multihop protocol unicast apparatus to route data to a destination node, the source node broadcasts a location request message to neighbor node and receives a location response message from the neighbor nodes in response to the location request message. Therefore, the source node routs unicast data on the basis of the location information of the destination node included in the location response message. At this time, the source node uses a location based forwarder selecting algorithm in order to select a forwarder.
Abstract:
An ethylene-based copolymer for non-crosslinked water supply pipe is provided. The ethylene-based copolymer is prepared using a supported hybrid metallocene catalyst and has a dimodal or broad molecular weight distribution. The ethylene-based copolymer has a high density molecular structure in a low molecular weight and has a low density molecular structure with high content of a comonomer in a high molecular weight. The ethylene-based copolymer has a molecular weight distribution of 5-30 and the distribution of copolymerization of ethylene and C3-20 α-olefin is localized in high molecular weight chains. Accordingly, the ethylene-based copolymer has superior processability, internal pressure creep resistance at high temperatures and environmental stress crack resistance.
Abstract:
Chewing gums and chewing gum bases which are cud-forming and chewable at mouth temperature contains a multi-block copolymer having at least two repeating sequences of at least two different polymeric blocks having at least three monomer units each. The multi-block copolymer optionally includes linking units and may be formulated to have non-covalent crosslinking between the copolymer chains. The multi-block copolymer is optionally plasticized with a compatible di-block copolymer to function as an elastomer system in the gum base. Characteristics of the multi-block copolymers can be selected to produce gum bases and chewing gums having desired properties. In some cases, chewed cuds formed from the gum bases may exhibit improved removability from environmental surfaces to which they may become undesirably attached.
Abstract:
Disclosed is a light emitting device array. The light emitting device array comprises a light emitting device and a body comprises first and second lead frames electrically connected to the light emitting device and a substrate on which the light emitting device package is disposed, the substrate comprises a base layer and a metal layer disposed on the base layer and electrically connected to the light emitting device package, wherein the metal layer comprises first and second electrode patterns electrically connected to the first and second lead frames and a heat dissipation pattern insulated from at least one of the first or(and) second electrode patterns, absorbing heat generated from at least one of the base layer or(and) the light emitting device package and then dissipating the heat.
Abstract:
A nonvolatile memory device includes gate electrodes three dimensionally arranged on a semiconductor substrate, a semiconductor pattern extending from the semiconductor substrate and crossing sidewalls of the gate electrodes, a metal liner pattern formed between the semiconductor pattern and formed on a top surface and a bottom surface of each of the gate electrodes, and a charge storage layer formed between the semiconductor pattern and the metal liner pattern.