Abstract:
A method of manufacturing a plurality of neural probes from a silicon wafer in which after neural probes are formed on one side of a silicon wafer, the other side of the silicon wafter is subject to a dicing process that separates and adjusts the thickness of the neural probes.
Abstract:
An anion exchange membrane is composed of a copolymer of 1,1-diphenylethylene and one or more styrene monomers, such as 4-tert-butylstyrene. The copolymer includes a backbone substituted with a plurality of ionic groups coupled to phenyl groups on the backbone via hydrocarbyl tethers between about 1 and about 7 carbons in length. High-temperature conditions enabled by these copolymers enhance conductivity performance, making them particularly suitable for use in anion exchange membranes in fuel cells, electrolyzers employing hydrogen, ion separations, etc. The properties of the membranes can be tuned via the degree of functionalization of the phenyl groups and selection of the functional groups, such as quaternary ammonium groups. Several processes can be used to incorporate the desired ionic functional groups into the polymers, such as chloromethylation, radical bromination, Friedel-Crafts acylation and alkylation, sulfonation followed by amination, or combinations thereof.
Abstract:
Chewing gums and chewing gum bases which are cud-forming and chewable at mouth temperature contains a multi-block copolymer having at least two repeating sequences of at least two different polymeric blocks having at least three monomer units each. The multi-block copolymer optionally includes linking units and may be formulated to have non-covalent crosslinking between the copolymer chains. The multi-block copolymer is optionally plasticized with a compatible di-block copolymer to function as an elastomer system in the gum base. Characteristics of the multi-block copolymers can be selected to produce gum bases and chewing gums having desired properties. In some cases, chewed cuds formed from the gum bases may exhibit improved removability from environmental surfaces to which they may become undesirably attached.
Abstract:
In a wireless multi-hop network, a transmission scheduling apparatus calculates a transmission demand of every node within the wireless multi-hop network, and allocates a time slot to each node by using the transmission demand of each node.
Abstract:
A magnetic resonance imaging apparatus that carries out a pulse sequence for making a signal of a first substance within an object smaller than a signal of a second substance within the object. The pulse sequence includes an α°-pulse for exciting the object, a refocus pulse for refocusing a phase of spin within a region excited by the α°-pulse, and a readout gradient field for acquiring a magnetic resonance signal from the region. The α°-pulse has a spectral selectivity such that a transverse magnetization of the first substance is made smaller than a transverse magnetization of the second substance. The refocus pulse has a spectral selectivity such that a phase of spin of the second substance is refocused and refocusing of a phase of spin of the first substance is suppressed.
Abstract:
A secondary battery has a safety vent formed on a can accommodating an electrode assembly. The safety vent is formed in a groove shape and the depth of the groove varies. The fracture site of the safety vent is controlled by adjusting the depth of the safety vent. The safety vent is prevented from damaging the electrode assembly when the electrode assembly is inserted in the can, and contacts the safety vent.
Abstract:
A first roadside equipment operates as a transmitting/receiving mode in a control channel interval of an Nth synchronization interval so as to support a handover. In this instance, a second roadside equipment neighboring to the first roadside equipment operates as a receiving mode in the control channel interval of the Nth synchronization interval. The first roadside equipment operates as the receiving mode in a control channel interval of an (N+1)th synchronization interval. In this instance, the second roadside equipment operates as the transmitting/receiving mode in the control channel interval of the (N+1)th synchronization interval.
Abstract:
An embodiment of the invention relates to a filter, a display device, and a liquid crystal display.The display device according to the embodiment of the invention includes a display panel, a filter disposed in the front of the display panel, and 3D glasses including a left eye lens and a right eye lens. The filter includes a substrate and a circular polarizing layer disposed on the substrate. Each of the left eye lens and the right eye lens transmits circularly polarized light and is turned on or off in response to an input synchronization signal.
Abstract:
A device for allocating a channel by using wireless access in a vehicular environment in which an onboard unit is provided in a vehicle and at least one roadside unit is provided, receives a service announcement message from at least one roadside unit, uses the service announcement message to generate an available service table, determines whether the available service table has roadside unit entries for transmitting the service announcement message, and if so, compares average RSSI provided by the roadside units to select a roadside unit to access, selects a channel that corresponds to the service provider ID with the highest priority from among the service provided by the selected roadside unit, and assigns the selected channel as a service channel to exchange information with the roadside unit.
Abstract:
An ethylene-based copolymer for non-crosslinked water supply pipe is provided. The ethylene-based copolymer is prepared using a supported hybrid metallocene catalyst and has a dimodal or broad molecular weight distribution. The ethylene-based copolymer has a high density molecular structure in a low molecular weight and has a low density molecular structure with high content of a comonomer in a high molecular weight. The ethylene-based copolymer has a molecular weight distribution of 5-30 and the distribution of copolymerization of ethylene and C3-20 α-olefin is localized in high molecular weight chains. Accordingly, the ethylene-based copolymer has superior processability, internal pressure creep resistance at high temperatures and environmental stress crack resistance.