Abstract:
A system and method for processing unconditioned syngas first removes solids and semi-volatile organic compounds (SVOC), then removes volatile organic compounds (VOC), and then removes at least one sulfur containing compound from the syngas. Additional processing may be performed depending on such factors as the source of syngas being processed, the products, byproducts and intermediate products desired to be formed, captured or recycled and environmental considerations.
Abstract:
A feedstock flexible process for converting feedstock into oil and gas includes (i) indirectly heated hydrous devolatilization of volatile feedstock components, (ii) indirectly heated thermochemical conversion of fixed carbon feedstock components, (iii) heat integration and recovery, (iv) vapor and gas pressurization, and (v) vapor and gas clean-up and product recovery. A system and method for feedstock conversion includes a thermochemical reactor integrated with one or more hydrous devolatilization and solids circulation subsystems configured to accept a feedstock mixture, comprised of volatile feedstock components and fixed carbon feedstock components, and continuously produce a volatile reaction product stream therefrom, while simultaneously and continuously capturing, transferring, and converting the fixed carbon feedstock components to syngas.
Abstract:
A system and method for processing unconditioned syngas first removes solids and semi-volatile organic compounds (SVOC), then removes volatile organic compounds (VOC), and then removes at least one sulfur containing compound from the syngas. Additional processing may be performed depending on such factors as the source of syngas being processed, the products, byproducts and intermediate products desired to be formed, captured or recycled and environmental considerations.
Abstract:
A system and method for processing unconditioned syngas first removes solids and semi-volatile organic compounds (SVOC), then removes volatile organic compounds (VOC), and then removes at least one sulfur containing compound from the syngas. Additional processing may be performed depending on such factors as the source of syngas being processed, the products, byproducts and intermediate products desired to be formed, captured or recycled and environmental considerations.
Abstract:
A method of producing liquid fuel and/or chemicals from a carbonaceous material entails combusting a conditioned syngas in pulse combustion heat exchangers of a steam reformer to help convert carbonaceous material into first reactor product gas which includes carbon monoxide, hydrogen, carbon dioxide and other gases. A portion of the first reactor product gas is transferred to a hydrogen reformer into which additional conditioned syngas is added and a reaction carried out to produce an improved syngas. The improved syngas is then subject to one or more gas clean-up steps to form a new conditioned syngas. A portion of the new conditioned syngas is recycled to be used as the conditioned syngas in the pulse combustion heat exchangers and in the hydrocarbon reformer. A system for carrying out the method include, a steam reformer, a hydrocarbon reformer, first and second gas-cleanup systems, a synthesis system and an upgrading system.
Abstract:
A system and method for processing unconditioned syngas first removes solids and semi-volatile organic compounds (SVOC), then removes volatile organic compounds (VOC), and then removes at least one sulfur containing compound from the syngas. Additional processing may be performed depending on such factors as the source of syngas being processed, the products, byproducts and intermediate products desired to be formed, captured or recycled and environmental considerations.
Abstract:
A two-stage syngas production method to produce a final product gas from a carbonaceous material includes producing a first product gas in a first reactor, separating char from the first product gas to produce separated char and char-depleted product gas, and separately reacting the separated char and the char-depleted product gas with an oxygen-containing gas in a second reactor to produce a final product gas. The separated char is introduced into the second reactor above the char-depleted product gas. The solids separation device may include serially connected cyclones, and the separated char may be entrained in a motive fluid in an eductor to produce a char and motive fluid mixture prior to being transferred to the second reactor. A biorefinery method produces a purified product from the final product gas.
Abstract:
A system and method for processing unconditioned syngas first removes solids and semi-volatile organic compounds (SVOC), then removes volatile organic compounds (VOC), and then removes at least one sulfur containing compound from the syngas. Additional processing may be performed depending on such factors as the source of syngas being processed, the products, byproducts and intermediate products desired to be formed, captured or recycled and environmental considerations.
Abstract:
A method of producing liquid fuel and/or chemicals from a carbonaceous material entails combusting a conditioned syngas in pulse combustion heat exchangers of a steam reformer to help convert carbonaceous material into first reactor product gas which includes carbon monoxide, hydrogen, carbon dioxide and other gases. A portion of the first reactor product gas is transferred to a hydrogen reformer into which additional conditioned syngas is added and a reaction carried out to produce an improved syngas. The improved syngas is then subject to one or more gas clean-up steps to form a new conditioned syngas. A portion of the new conditioned syngas is recycled to be used as the conditioned syngas in the pulse combustion heat exchangers and in the hydrocarbon reformer. A system for carrying out the method include, a steam reformer, a hydrocarbon reformer, first and second gas-cleanup systems, a synthesis system and an upgrading system.
Abstract:
A system and method for processing unconditioned syngas first removes solids and semi-volatile organic compounds (SVOC), then removes volatile organic compounds (VOC), and then removes at least one sulfur containing compound from the syngas. Additional processing may be performed depending on such factors as the source of syngas being processed, the products, byproducts and intermediate products desired to be formed, captured or recycled and environmental considerations.