Abstract:
The present invention pertains to a method and apparatus for total hemoglobin measurement. A modulated optical signal based on a digital code sequence is transmitted to human tissue. A temporal transfer characteristic is derived from the modulated optical signal. Total hemoglobin is determined based on the temporal transfer characteristic.
Abstract:
An x-ray collimator can be constructed from multiple subassemblies, which at least includes a first subassembly that reduces the leakage of x-ray radiation between adjacent apertures and a second subassembly that reduces the spill of x-ray radiation around the detector face. Each of these subassemblies has numerous apertures. In the first subassembly these apertures correspond to focal spots on an x-ray source, and in the second subassembly, these apertures are shaped such that the dimensions increase from smaller entrances to larger exits.
Abstract:
The present invention pertains to an apparatus and method for X-ray imaging a human patient. A vacuum bell bonded to an X-ray radiation-permeable window that can emit X-ray radiation from a plurality of spots located 1 cm from its edge, a collimator, and a detector are used. A ring of stationary X-ray sources can also be used with a stationary collimator and a rotating slot collimator and detector. An X-ray beam can be aligned in an X-ray system by establishing a position of the beam with respect to a moving collimator at a number of points in time, monitoring the velocity of the collimator, navigating the beam to a calculated position of a hole in the collimator, and correcting the alignment of the beam based on the location of the beam on the detector.
Abstract:
The present invention pertains to an apparatus and method for inverse geometry volume computed tomography medical imaging of a human patient. A plurality of stationary x-ray sources for producing x-ray radiation are used. A rotating collimator located between the plurality of x-ray sources and the human patient is also used. A rotating detector can also be used.
Abstract:
The present invention pertains to an apparatus and method for inverse geometry volume computed tomography medical imaging of a human patient. A plurality of stationary x-ray sources for producing x-ray radiation are used. A rotating collimator located between the plurality of x-ray sources and the human patient is also used. A rotating detector can also be used.
Abstract:
The present invention pertains to a method and apparatus for total hemoglobin measurement. A modulated optical signal based on a digital code sequence is transmitted to human tissue. A temporal transfer characteristic is derived from the modulated optical signal. Total hemoglobin is determined based on the temporal transfer characteristic.
Abstract:
The present invention pertains to an apparatus and method for adaptive exposure in imaging systems. An x-ray source for producing x-ray radiation and an x-ray detector for measuring amount of x-ray radiation passing through the human patient and striking the detector can be used. A tomographic image of the human patient or a tomosynthetic image of the human patient can be generated. Region of interest filtering and equalization filtering can be utilized. Filtering can be accomplished with a mechanical shield or shutter or with electronic control of the x-ray source.
Abstract:
The present invention pertains to a system for electronic brachytherapy wherein a layer of target material can produce reflection and transmission X-rays when struck by electrons from a cathode. An alternative system can have a fixed-size containment structure around a miniature X-ray source, with X-ray attenuating coolant fluid between the source and containment structure. A balloon can be around the fixed-size containment structure and can be inflated with an X-ray inert gas.