Abstract:
According to an embodiment, there is provided a heat spreader including an evaporation portion, a first condenser portion, a working fluid, and a first flow path. The evaporation portion is arranged in a first position. The first condenser portion is arranged in a second position, the second position being the first position. The working fluid evaporates from a liquid phase to a gas phase in the evaporation portion, and condenses from the gas phase to the liquid phase in the first condenser portion. The first flow path is made of a nanomaterial, has hydrophobicity on a surface, and causes the working fluid condensed to the liquid phase in the first condenser portion to flow to the evaporation portion.
Abstract:
Crystalline superfine particles capable of emitting light depending upon a time-rate-of-change of a stress and controlled in grain size in the range from 5 nm to 100 nm are complexed with another material such as resin. The crystalline superfine particles are manufactured by using aggregates of molecules, i.e. inverted micelles, which orient hydrophilic groups of surfactant molecules inward and hydrophobic groups outward in a nonpolar solvent and which contain metal ions of a metal for forming the crystalline superfine particles dissolved in water inside the inverted micelles. Alternatively, they are manufactured by using inverted micelles enveloping precursor superfine particles, in which precursor superfine particles are enveloped in water inside the inverted micelles. The crystalline superfine particles are excellent in dispersibility in another material to be complexed, enhanced in emission efficiency and usable to make a transparent stress emission material. The complex material obtained is used to manufacture artificial light-emitting hair structures, artificial light-emitting skin, artificial light-emitting bodies, artificial light-emitting fabrics, and others.
Abstract:
An electrical connection box includes a circuit substrate on which an electrical component is mounted, a case which is adapted to cover the circuit substrate, and a heat radiation member which is directly attached to the electrical component.
Abstract:
A novel aromatic carboxylic acid useful as a material for macromolecular compounds and, in particular, for polycondensed macromolecular compounds exhibiting excellent heat resistance, an acid halide derivative thereof and a process for producing these compounds are disclosed. The aromatic carboxylic acid and the acid halide derivative thereof have structures represented general formulae (1) and (2), respectively, and can be efficiently produced from a dialkyl ester derivative of isophthalic acid and an acetylene derivative in accordance with the disclosed process comprising specific steps. In the above formulae, A represents: —C≡C—R1 (a) or (R1 represents hydrogen atom, an alkyl group or an aromatic group, R2 represents an alkyl group or an aromatic group) and X represents a halogen atom.
Abstract:
A solid-state displacement element includes an inorganic layered compound having a layered structure and an organic substance inserted between layers of the inorganic layered compound. The solid-state displacement element expands or contracts in the lamination direction of the inorganic layered compound when irradiated with controlling light. An optical element and an interference filter using the same principle of expansion or contraction as that in the solid-state displacement element are also disclosed.
Abstract:
A novel resin-transfer-moldable terminal-modified imide oligomer having a residue of a tetravalent aromatic tetracarboxylic acid and represented by general formula (1), and the imide oligomer contains an oligomer where n is 0 in an amount of 10% by mole or more. In the formula, R1 and R2 are a hydrogen atom or an aromatic hydrocarbon group having 6 to 10 carbon atoms, and one of R1 and R2 is the aromatic hydrocarbon group having 6 to 10 carbon atoms; R3 is an aromatic organic group surrounded by four carbonyl groups in the aromatic tetracarboxylic acid, and for a formula where n is 2 or more, Ras are optionally the same as or different from each other; and n is an integer of 0 or more and 6 or less.
Abstract:
An electrical component is mounted a circuit board. A case covers the circuit board. The circuit board includes a plate-like metal core and an insulation portion. The insulation portion covers a surface of the metal core. The metal core is provided with a heat radiation portion exposed from the case.
Abstract:
According to an embodiment, there is provided a heat spreader including a condenser portion formed of a nanomaterial. The heat spreader further includes a first plate member, a second plate member, and a support portion. The first plate member includes a first surface, the first surface including a first area provided with the condenser portion. The second plate member includes a second surface and is arranged such that the second surface faces the first surface. The support portion protrudes from the first area of the first plate member to the second plate member, and has an end portion that is free from the nanomaterial and is in contact with the second surface of the second plate member.
Abstract:
According to an embodiment of the present invention, there is provided a heat transport device including an evaporation portion, a flow path, a condenser portion, and a working fluid. The evaporation portion is made of nanomaterial, and has V-shaped grooves formed on a surface. The flow path communicates with the evaporation portion. The condenser portion communicates with the evaporation portion through the flow path. The working fluid evaporates from a liquid phase to a vapor phase in the evaporation portion and condenses from the vapor phase to the liquid phase in the condenser portion.
Abstract:
A circuit board includes a plate-shaped conductive core and an insulative section covering the core. An electrical component is disposed on the insulative section. A heat radiating member is disposed on the insulative section and connected to the core. A casing houses the circuit board, the electrical component and the heat generating member.