Abstract:
A camera assembly and a method for mounting it in a portable electronic device are provided. The assembly includes a camera module, and a camera trim coupled with the camera module. The camera assembly includes a first shock mount coupling the camera trim to an interior surface of the housing, and a second shock mount coupling the camera trim to an exterior surface of the housing. The first and second shock mounts cooperate to suspend an outer perimeter of the camera trim within an opening of the housing of the portable electronic device. A mobile telecommunications device including a camera assembly as above is also provided.
Abstract:
An electrical board-to-board connector including a flexible cable assembly having a low profile or dimensionally reduced configuration. The connector body of a cable assembly may be widened to provide the structural rigidity sufficient to support an array of solder lead connections. Other support elements may be omitted from the cable assembly, which results in a reduced height dimension. The flexible cable assembly may also include a cowling used to retain the cable assembly against a circuit board. The cowling may also be configured to reduce the dimensions or dimensional footprint of the connection.
Abstract:
A retail electronic product demonstration fixture for demonstrating portable electronic devices. The product demonstration fixture may include an exhibition portion and a base portion. A portable electronic device offered for sale may be affixed to the exhibition portion. The base portion may include an electronic display, an auxiliary battery, and an auxiliary controller. The auxiliary controller may direct power from the auxiliary battery to the electronic display upon determining that a battery within the electronic display has fallen below a particular selected level. Similarly the auxiliary controller may direct power from the auxiliary battery to the portable electronic device offered for sale upon determining that a battery within the portable electronic device has fallen below a selected level.
Abstract:
An electronic device is provided with a display and a solar cell ambient light sensor that receives light through a portion of the display. The solar cell ambient light sensor may include one or more thin-film photovoltaic cells. A voltage that accumulates within the thin-film photovoltaic cell in response to ambient light is sampled and converted into ambient light data. The device includes control circuitry that modifies the intensity of display light generated by the display based on the ambient light data from the photovoltaic cell. The solar cell ambient light sensor is attached to a transparent cover layer, a color filter layer, or any other layer of the display. When the accumulated voltage is not being sampled for ambient light measurements, the voltage may be used to provide charge to a battery in the device.
Abstract:
A trim is provided which may be substantially concealed in an electronic device housing. Embodiments may be configured to distribute received forces away from internal components of an electronic device. Further some embodiments may be configured to align an electronic device housing with the internal plug receptacle for ease of assembly. Some embodiments may be configured to align a plug with the plug receptacle during plug attachment to ensure the correct attachment of the plug. Further embodiments may be made of a substantially rigid material to sustain repeated cycles plug insertion and removal. Additional embodiments may limit the ability for moisture to access the internal components of the electronic device. Certain embodiments may be interposed between a plug receptacle and an electronic device housing.
Abstract:
Electronic devices may be provided that contain flexible displays that are bent to form displays on multiple surfaces of the devices. Bent flexible displays may be bent to form front side displays and edge displays. Edge displays may be separated from front side displays or from other edge displays using patterned housing members, printed or painted masks, or by selectively activating and inactivating display pixels associated with the flexible display. Edge displays may alternately function as virtual buttons, virtual switches, or informational displays that are supplemental to front side displays. Virtual buttons may include transparent button members, lenses, haptic feedback components, audio feedback components, or other components for providing feedback to a user when virtual buttons are activated.
Abstract:
A head-mounted device includes a first device portion and a second device portion. A first coupler portion of the first device portion is connectable to a second coupler portion of the second device portion to define a connected position in which the first device portion is connected to the second device portion and a disconnected position in which the first device portion is disconnected from the second device portion. A second adjuster portion of the second device portion causes a first adjuster portion of the first device portion to move a first optical module and a second optical module in response to movement of the first device portion and the second device portion from the disconnected position to the connected position.
Abstract:
A head-mounted device may have a head-mounted support structure. Rear-facing displays may present images to eye boxes at the rear of the head-mounted support structure. A forward-facing publicly viewable display may be supported on a front side of the head-mounted support structure facing away from the rear-facing displays. The forward-facing display may have pixels that form an active area in which images are displayed and may have a ring-shaped inactive border area that surrounds the pixels. A cosmetic covering structure such as ring-shaped shroud member may overlap optical components in the inactive border area. The optical components may be received within through-hole openings in the cosmetic covering structure and/or may operate through transparent portions of the cosmetic covering structure.
Abstract:
Electronic devices may be provided that contain flexible displays that are bent to form displays on multiple surfaces of the devices. Bent flexible displays may be bent to form front side displays and edge displays. Edge displays may be separated from front side displays or from other edge displays using patterned housing members, printed or painted masks, or by selectively activating and inactivating display pixels associated with the flexible display. Edge displays may alternately function as virtual buttons, virtual switches, or informational displays that are supplemental to front side displays. Virtual buttons may include transparent button members, lenses, haptic feedback components, audio feedback components, or other components for providing feedback to a user when virtual buttons are activated.
Abstract:
An electronic device may have a cover layer and an antenna. A dielectric adapter may have a first surface coupled to the antenna and a second surface pressed against the cover layer. The cover layer may have a three-dimensional curvature. The second surface may have a curvature that matches the curvature of the cover layer. Biasing structures may exert a biasing force that presses the antenna against the dielectric adapter and that presses the dielectric adapter against the cover layer. The biasing force may be oriented in a direction normal to the cover layer at each point across dielectric adapter. This may serve to ensure that a uniform and reliable impedance transition is provided between the antenna and free space through the cover layer over time, thereby maximizing the efficiency of the antenna.