Abstract:
In accordance with some embodiments herein, methods and apparatuses for deposition of thin films are provided. In some embodiments, a plurality of stations is provided, in which each station provides a different reactant or combination of reactants. The stations can be in gas isolation from each other, and the substrate can be contacted with different reactants at different temperatures so as to minimize or prevent undesired gas phase reactions, chemical vapor deposition (CVD) and/or atomic layer deposition (ALD) reactions between the different reactants or combinations of reactants.
Abstract:
A chemical vapor deposition furnace for depositing silicon nitride films is disclosed. The furnace includes a process chamber elongated in a substantially vertical direction and a wafer boat for supporting a plurality of wafers in the process chamber. A process gas injector inside the process chamber is provided with vertically spaced gas injection holes to provide gas introduced at a feed end in an interior of the process gas injector to the process chamber. A valve system connected to the feed end of the process gas injector is being constructed and arranged to connect a source of a silicon precursor and a nitrogen precursor to the feed end for depositing silicon nitride layers. The valve system may connect the feed end of the process gas injector to a cleaning gas system to provide a cleaning gas to remove silicon nitride from the process gas injector and/or the process chamber.
Abstract:
An apparatus 1 for processing a plurality of substrates 3 is provided. The apparatus may have a process tube 5 creating a process chamber 7; a heater 9 surrounding the process tube 5; a flange 11 for supporting the process tube; and a door 15 configured to support a wafer boat 17 with a plurality of substrates 3 in the process chamber and to seal the process chamber 7. An exhaust operably connected to the process chamber 7 may be provided to remove gas from the process chamber via a first exhaust duct 19. The apparatus may be provided with an extractor chamber 21 surrounding the first exhaust duct where it connects to the process chamber and connected to a second exhaust duct 23 to remove gas from the extractor chamber.
Abstract:
The disclosure relates to a flange for a process tube in an apparatus for processing substrates, e.g., a vertical furnace. The flange may be provided with an opening for in use giving access to the process chamber of the process tube and a cooling channel for allowing a cooling fluid to flow there through and cool the flange. A material with a heat conductivity between 0.1 and 40 W/m K may be at least partially provided in between the cooling fluid and the rest of the flange.
Abstract:
In some embodiments, a system is disclosed for delivering hydrogen peroxide to a semiconductor processing chamber. The system includes a process canister for holding a H2O2/H2O mixture in a liquid state, an evaporator provided with an evaporator heater, a first feed line for feeding the liquid H2O2/H2O mixture to the evaporator, and a second feed line for feeding the evaporated H2O2/H2O mixture to the processing chamber, the second feed line provided with a second feed line heater. The evaporator heater is configured to heat the evaporator to a temperature lower than 120° C. and the second feed line heater is configured to heat the feed line to a temperature equal to or higher than the temperature of the evaporator.
Abstract:
The invention relates to an apparatus for manufacturing a semiconductor device comprising a reaction chamber comprising a substrate holder for holding a substrate; and, a heater for heating the substrate. The heater may comprise a vertical cavity surface emitting laser constructed and arranged to emit a radiation beam to a substrate held by the substrate holder to heat the substrate.
Abstract:
The invention relates to an apparatus for manufacturing a semiconductor device comprising a reaction chamber comprising a substrate holder for holding a substrate; and, a heater for heating the substrate. The heater may comprise a vertical cavity surface emitting laser constructed and arranged to emit a radiation beam to a substrate held by the substrate holder to heat the substrate.
Abstract:
A chemical vapor deposition furnace for depositing silicon nitride films, is discloses. The furnace comprising a process chamber elongated in a substantially vertical direction and a wafer boat for supporting a plurality of wafers in the process chamber. A process gas injector is provided inside the process chamber extending in a substantially vertical direction over substantially a wafer boat height and comprising a feed end connected to a source of a silicon precursor and a source of a nitrogen precursor and a plurality of vertically spaced gas injection holes to provide gas from the feed end to the process chamber. The furnace may comprise a purge gas injection system to provide a purge gas into the process chamber near a lower end of the process chamber.
Abstract:
Batch furnace assembly for processing wafers, comprising a process chamber housing defining a process chamber and having a process chamber opening, a wafer boat housing defining a water boat chamber, a door assembly, a differential pressure sensor, and a controller. The door assembly has a closed position in which it closes off the process chamber opening. The door assembly defines in a closed position a door assembly chamber having a purge gas inlet for supplying purge gas to the door assembly chamber for gas sealingly separating the process chamber from the wafer boat chamber. The differential pressure sensor assembly fluidly connects to the door assembly chamber and is configured to determine a pressure difference between a pressure in the door assembly chamber and a reference pressure in a reference pressure chamber. The controller is configured to establish whether the pressure difference is in a desired pressure range.
Abstract:
The invention relates to a substrate processing apparatus comprising a reaction chamber provided with a substrate rack for holding a plurality of substrates in the reaction chamber. The substrate rack may have a plurality of spaced apart substrate holding provisions configured to hold the plurality of substrates. The apparatus may have an illumination system constructed and arranged to irradiate radiation with a range from 100 to 500 nanometers onto a top surface of the substrates.