Abstract:
A method for aligning output from a first transmit source and a second transmit source is provided. The method includes combining complementary portions of differential signals generated from respective transmit sources to generate an output bit sequence and comparing the output bit sequence with an input bit sequence used to generate the differential signals. The method further includes adjusting one of the first or the second transmit source based on the comparison to align the output from the first and the second transmit sources. A PLD having the capability to align channels of different octets is also provided.
Abstract:
A method is disclosed for attaching a device package to a circuit board with a chip mount area that has a set of elongated pads located near the perimeter of a chip mount area. In accordance with this method, a mask is formed on the circuit board. A plurality of openings are formed in the mask, including a plurality of openings over at least one of the pads. A plurality of adhesive masses area attached to a surface of the device package, each adhesive mass being aligned with an electrical contact area on the surface of the device package. The device package is positioned over the circuit board to align the adhesive masses with the openings in the mask, and the device package is attached to the circuit board. In one embodiment, the mask openings are formed in a staggered formation. An advantage of this method is that a less expensive chip of the ball grid array type may be used on a circuit board design for gull-wing-leaded chip packages without a substantial redesign of the circuit board. The invention also allows ball grid array-type packages and gull-wing leaded chip packages to be used interchangeably for the same circuit board design with only a modification of the mask used in the circuit board fabrication process.
Abstract:
A communications method and a network for carrying out the method are provided. The network includes a loopback command system and a first link station connected to a communications link. The link traverses several loopback-capable devices as it extends from the first link station to a second link station remote from the first link station. The loopback command system controls the loopback-capable devices to cause them to loopback. In order to command a loopback of a particular loopback-capable device, the first link station generates an initial loopback value and forwards the same over the link to a downstream loopback-capable device located along the link. Each loopback-capable device receives a loopback value from an upstream device, and compares if the received value is equal to a predetermined value. If the loopback value is equal to the predetermined value, the device is placed into a loopback state. Otherwise, the loopback value is modified by the device, and the modified loopback value is forwarded to the next downstream device located along the link. The loopback value may be represented by a digital bit word, or by the position of a particular bit within a bit stream of the link.
Abstract:
A lamp is provided. The lamp includes at least one light emitting diode (LED) and an electronic circuit configured to provide power to the at least one LED. The lamp includes at least one flat circuit board having mounted thereto the at least one LED and the electronic circuit. The at least one flat circuit board acts as a heatsink to dissipate heat from the at least one LED and acts as a plurality of circuit paths for the electronic circuit and the at least one LED.
Abstract:
A transmission for a motor vehicle is provided. The transmission is a plurality of switches that reeonfigurably interconnects constrained energy sources through switch settings. In one embodiment, the energy sources are batteries or fuel cells for an electric or hybrid motor vehicle. The transmission is in communication with a controller that receives energy from the plurality of energy sources and regulates output energy. In one embodiment the controller is a pulse width modulation controller and may also be an inverter and/or converter. A device for converting the output energy of the controller into one of a force or a rate is provided. In one embodiment the device is an electric motor.
Abstract:
A transceiver system with reduced latency uncertainty is described. In one implementation, the transceiver system has a word aligner latency uncertainty of zero. In another implementation, the transceiver system has a receiver-to-transmitter transfer latency uncertainty of zero. In yet another implementation, the transceiver system has a word aligner latency uncertainty of zero and a receiver-to-transmitter transfer latency uncertainty of zero. In one specific implementation, the receiver-to-transmitter transfer latency uncertainty is eliminated by using the transmitter parallel clock as a feedback signal in the transmitter phase locked loop (PLL). In one implementation, this is achieved by optionally making the transmitter divider, which generates the transmitter parallel clock, part of the feedback path of the transmitter PLL. In one implementation, the word aligner latency uncertainty is eliminated by using a bit slipper to slip bits in such a way so that the total delay due to the word alignment and bit slipping is constant for all phases of the recovered clock. This allows for having a fixed and known latency between the receipt and transmission of bits for all phases of parallelization by the deserializer. In one specific implementation, the total delay due to the bit shifting by the word aligner and the bit slipping by the bit slipper is zero since the bit slipper slips bits so as to compensate for the bit shifting that was performed by the word aligner.
Abstract:
An apparatus for transmitting and receiving data via a transmission medium. The apparatus includes a local receiver and a local transmitter. The local receiver receives an incoming data signal transmitted through the transmission medium by a remote transmitter and derives from the incoming data signal one or more processing parameters corresponding to one or more characteristics of the transmission medium. The local transmitter receives the one or more processing parameters from the local receiver, generates an outgoing data signal using the one or more processing parameters, and transmits the outgoing data signal through the transmission medium.
Abstract:
Multi-layer printed circuit boards are sometimes connected to transmission paths which may be susceptible to electrical discharges associated with transient electrical events occurring along the transmission path. A method is provided for assuring that two respective layers of the printed circuit board are aligned within predetermined tolerances. Aligning respective layers within acceptable tolerances provides a means of assuring that predetermined distances between a ground layer and a power layer will be maintained, thereby ensuring that electrical arcing will not occur between the power and ground layer in the event of voltage spikes or current surges.