Abstract:
The present invention generally relates to filling of a feature by depositing a barrier layer, depositing a seed layer over the barrier layer, and depositing a conductive layer over the seed layer. In one embodiment, the seed layer comprises a copper alloy seed layer deposited over the barrier layer. For example, the copper alloy seed layer may comprise copper and a metal, such as aluminum, magnesium, titanium, zirconium, tin, and combinations thereof. In another embodiment, the seed layer comprises a copper allloy seed layer deposited over the barrier layer and a second seed layer deposited over the copper alloy seed layer. The copper alloy seed layer may comprise copper and a metal, such as aluminum, magnesium, titanium, zirconium, tin, and combinations thereof The second seed layer may comprise a metal, such as undoped copper. In still another embodiment, the seed layer comprises a first seed layer and a second seed layer. The first seed layer may comprise a metal, such as aluminum, magnesium, titanium, zirconium, tin, and combinations thereof. The second seed layer may comprise a metal, such as undoped copper.
Abstract:
The present invention generally relates to filling of a feature by depositing a barrier layer, depositing a seed layer over the barrier layer, and depositing a conductive layer over the seed layer. In one embodiment, the seed layer comprises a copper alloy seed layer deposited over the barrier layer. For example, the copper alloy seed layer may comprise copper and a metal, such as aluminum, magnesium, titanium, zirconium, tin, and combinations thereof. In another embodiment, the seed layer comprises a copper alloy seed layer deposited over the barrier layer and a second seed layer deposited over the copper alloy seed layer. The copper alloy seed layer may comprise copper and a metal, such as aluminum, magnesium, titanium, zirconium, tin, and combinations thereof The second seed layer may comprise a metal, such as undoped copper. In still another embodiment, the seed layer comprises a first seed layer and a second seed layer. The first seed layer may comprise a metal, such as aluminum, magnesium, titanium, zirconium, tin, and combinations thereof. The second seed layer may comprise a metal, such as undoped copper.
Abstract:
A method of forming a composite barrier layer structure for use in integrated circuits is disclosed. The composite barrier layer structure formed using both physical vapor deposition (PVD) and chemical vapor deposition (CVD) techniques. The composite barrier layer structure comprises a CVD deposited layer formed on a PVD deposited layer. During the PVD process, the underlying surface of the substrate is treated, reducing the resistivity of the barrier layer structure formed thereon.
Abstract:
Provided herein is a method of depositing alpha-tantalum film on a semiconductor wafer by depositing a tantalum nitride film on a wafer; and then depositing a tantalum film over the tantalum nitride film using wafer bias. The tantalum film as deposited is in alpha phase. Also provided is a method of depositing Cu barrier and seed layer on a semiconductor wafer, comprising the steps of depositing a tantalum nitride layer on a wafer; depositing a tantalum layer over the tantalum nitride layer using wafer bias, wherein the resulting tantalum barrier layer is in alpha phase; and then depositing Cu seed layer over the alpha-tantalum barrier layer. Further provided is a method of depositing alpha-tantalum film/layer using two-chamber process, wherein the tantalum nitride and subsequently deposited tantalum films/layers can be deposited in two separate chambers, such as IMP or SIP chambers. Still further provided is a method of depositing alpha-tantalum film by depositing PVD tantalum film on CVD films.
Abstract:
In a first aspect, a method is provided that includes (1) forming a first barrier layer over the sidewalls and bottom of a via using atomic layer deposition within an atomic layer deposition (ALD) chamber; (2) removing at least a portion of the first barrier layer from the bottom of the via by sputter etching; and (3) depositing a second barrier layer on the sidewalls and bottom of the via within the ALD chamber. Numerous other embodiments are provided, as are systems, methods and computer program products in accordance with these and other aspects.
Abstract:
The present invention provides a method of forming a titanium silicon nitride barrier layer on a semiconductor wafer, comprising the steps of depositing a titanium nitride layer on the semiconductor wafer; plasma-treating the titanium nitride layer in a N2/H2 plasma; and exposing the plasma-treated titanium nitride layer to a silane ambient, wherein silicon is incorporated into the titanium nitride layer as silicon nitride thereby forming a titanium silicon nitride barrier layer. Additionally, there is provided a method of improving the barrier performance of a titanium nitride layer comprising the step of introducing silicon into the titanium nitride layer such that the silicon is incorporated into the titanium nitride layer as silicon nitride. Also provided is a method of integrating copper into a semiconductor device and a method of improving copper wettability at a copper/titanium nitride interface in a semiconductor device.
Abstract:
A method for depositing a cap layer over a metal-containing interconnect is provided. In one aspect, the cap layer is formed by introducing a pulse of a metal-containing compound followed by a pulse of a nitrogen-containing compound. In one aspect, the cap layer comprises tantalum nitride. The cap layer provides good barrier and adhesive properties, thereby enhancing the electrical performance and reliability of the interconnect.
Abstract:
An apparatus and method for performing uniform gas flow in a processing chamber is provided. In one embodiment, an apparatus is an edge ring that includes an annular body having an annular seal projecting therefrom is provided. The seal is coupled to a side of the annular body opposite a side adapted to seat on the substrate support. In another embodiment, a processing system is provided that includes a chamber body, a lid, a substrate support and a plurality of flow control orifices. The lid is disposed on the chamber body and defining an interior volume therewith. The substrate support is disposed in the interior volume and at least partially defines a processing region with the lid. The flow control orifices are disposed between the substrate support and the lid. The flow control orifices are adapted to control flow of gases exiting the processing region.
Abstract:
A method for depositing a film on a substrate is provided. In one aspect, the method includes providing a metal-containing precursor to an activation zone, and activating the metal-containing precursor to form an activated precursor. The activated precursor gas is transported to a reaction chamber, and a film is deposited on the substrate using a cyclical deposition process, wherein the activated precursor gas and a reducing gas are alternately adsorbed on the substrate. Also provided is a method of depositing a film on a substrate using an activated reducing gas.
Abstract:
Methods and an apparatus of forming a titanium silicon nitride (TiSiN) layer are disclosed. The titanium silicon nitride (TiSiN) layer may be formed using a cyclical deposition process by alternately adsorbing a titanium-containing precursor, a silicon-containing gas and a nitrogen-containing gas on a substrate. The titanium-containing precursor, the silicon-containing gas and the nitrogen-containing gas react to form the titanium silicon nitride (TiSiN) layer on the substrate. The formation of the titanium silicon nitride (TiSiN) layer is compatible with integrated circuit fabrication processes. In one integrated circuit fabrication process, a titanium silicon nitride (TiSiN) layer may be used as a diffusion barrier for a copper metallization process.