Abstract:
Methods and apparatuses for launching unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft can be launched from an apparatus that includes a launch carriage that moves along a launch guide. The carriage can accelerate when portions of the carriage and/or the launch guide move relative to each other. A gripper carried by the launch carriage can have at least one grip portion in contact with the aircraft while the launch carriage accelerates along the launch axis. The at least one grip portion can move out of contact with the aircraft as the launch carriage decelerates, releasing the aircraft for takeoff. A brake can arrest the motion of the gripper after launch.
Abstract:
Methods and apparatuses for launching unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft can be launched from an apparatus that includes a launch carriage that moves along a launch guide. The carriage can accelerate when portions of the carriage and/or the launch guide move relative to each other. A gripper carried by the launch carriage can have at least one grip portion in contact with the aircraft while the launch carriage accelerates along the launch axis. The at least one grip portion can move out of contact with the aircraft as the launch carriage decelerates, releasing the aircraft for takeoff. A brake can arrest the motion of the gripper after launch.
Abstract:
Methods and apparatuses for launching unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft can belaunched from an apparatus that includes a launch carriage that moves along a launch axis. A gripper carried by the launch carriage can have at least one grip portion in contact with the aircraft while the launch carriage accelerates along the launch axis. The at least one grip portion can move out of contact with the fuselage of the aircraft as the launch carriage decelerates, releasing the aircraft for takeoff.
Abstract:
Methods and apparatuses for capturing, recovering, disassembling, and storing unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the boom can be extended to deploy a recovery line to capture the aircraft in flight, a process that can be aided by a line capture device having retainers in accordance with further aspects of the invention. The aircraft can then be returned to its launch platform, disassembled, and stored, again with little or no direct manual contact between the operator and the aircraft, for example, by capturing a first wing of the aircraft and securing a second wing before releasing the first.
Abstract:
An aircraft capable of thrust-borne flight can be automatically retrieved, serviced, and launched using equipment suitable for use on a small vessel, or a base with similarly limited space or irregular motion. For retrieval, the aircraft drops a weighted cable, and pulls it at low relative speed into a broad aperture of a base apparatus. Continued translation of the aircraft may pull the cable clear of the apparatus, in which case it can continue in free flight and return for another retrieval attempt. Alternatively, the cable will be dragged along guiding surfaces of the apparatus into and through a slot or similar channel, until its free end is captured. The aircraft, having thus become anchored to the base station, is then pulled down by the cable into a receptacle. Guiding surfaces of the receptacle adjust the position and orientation of a probe on the aircraft, while directing the probe to mate with a docking fixture. Once mated to the fixture, the cable can be released and stored aboard the aircraft; the aircraft can be automatically shut down; and fueling or other servicing can be completed through appropriate connectors in the docking fixture. The aircraft can remain docked as needed, and when desired, be automatically started and tested in preparation for launch. It can then be released into free flight. A full ground-handling cycle can thus accomplished with simple and economical apparatus. It can be used with low risk of damage, and only moderate piloting accuracy.
Abstract:
For retrieval of a hovering aircraft, a cable, bar, or similar fixture is suspended in an approximately horizontal orientation across the retrieval area between two well-separated supports. The aircraft slowly flies into this fixture, which then slides along the aircraft in a direction approximately parallel with the aircraft's thrust line. This leads to the aircraft becoming fastened to the fixture by an interceptor or aircraft capturer, which in alternative embodiments are respectively on the aircraft or the fixture or both. Thrust is then reduced, and the aircraft comes to rest hanging from the fixture for subsequent removal. Retrieval is thus accomplished with simple and economical apparatus, light and unobtrusive elements on the aircraft, low risk of damage, and only moderate piloting accuracy.
Abstract:
The twist distribution of torsionally-flexible rotor blades is adjusted by exploiting centrifugal effect on inertial torquers affixed at one or more stations along the blade span. Twist is thereby made to vary passively as a function of rotor speed and hub incidence angle. With inertias of appropriate size and location, the twist variation is such that high rotor efficiency is maintained over a wide range of operating conditions. Satisfactory dynamic behavior of the blade, including cyclic-pitch response and flutter resistance, is simultaneously achieved.
Abstract:
Methods and apparatuses for cable launching airborne devices (e.g., unmanned aircraft) are disclosed. In one embodiment, an apparatus includes an elongated structure, e.g., a tower, boom or derrick. At least one flexible elongated member (e.g., a cable or rope) can be attached toward one end to the structure and toward another end to the ground or another structure to form an elongated launch path. A cradle, which can carry the airborne device, can also be movably attached to the flexible elongated member and can be accelerated along the launch path. As the cradle decelerates, the aircraft can be released into flight.
Abstract:
For retrieval of a hovering aircraft, a cable, bar, or similar fixture is suspended in an approximately horizontal orientation across the retrieval area between two well-separated supports. The aircraft slowly flies into this fixture, which then slides along the aircraft in a direction approximately parallel with the aircraft's thrust line. This leads to the aircraft becoming fastened to the fixture by an interceptor or aircraft capturer which in alternative embodiments are respectively on the aircraft or the fixture or both. Thrust is then reduced, and the aircraft comes to rest hanging from the fixture for subsequent removal. Retrieval is thus accomplished with simple and economical apparatus, light and unobtrusive elements on the aircraft, low risk of damage, and only moderate piloting accuracy.
Abstract:
The twist distribution of torsionally-flexible rotor blades is adjusted by exploiting centrifugal effect on inertial torquers affixed at one or more stations along the blade span. Twist is thereby made to vary passively as a function of rotor speed and hub incidence angle. With inertias of appropriate size and location, the twist variation is such that high rotor efficiency is maintained over a wide range of operating conditions. Satisfactory dynamic behavior of the blade, including cyclic-pitch response and flutter resistance, is simultaneously achieved.