AUTOMATED WAREHOUSING USING ROBOTIC FORKLIFTS OR OTHER MATERIAL HANDLING VEHICLES

    公开(公告)号:US20210056499A1

    公开(公告)日:2021-02-25

    申请号:US17074376

    申请日:2020-10-19

    Abstract: Automated inventory management and material (or container) handling removes the requirement to operate fully automatically or all-manual using conventional task dedicated vertical storage and retrieval (S&R) machines. Inventory requests Automated vehicles plan their own movements to execute missions over a container yard, warehouse aisles or roadways, sharing this space with manually driven trucks. Automated units drive to planned speed limits, manage their loads (stability control), stop, go, and merge at intersections according human driving rules, use on-board sensors to identify static and dynamic obstacles, and human traffic, and either avoid them or stop until potential collision risk is removed. They identify, localize, and either pick-up loads (pallets, container, etc.) or drop them at the correctly demined locations. Systems without full automation can also implement partially automated operations (for instance load pick-up and drop), and can assure inherently safe manually operated vehicles (i.e., trucks that do not allow collisions).

    AUTOMATED WAREHOUSING USING ROBOTIC FORKLIFTS OR OTHER MATERIAL HANDLING VEHICLES

    公开(公告)号:US20210035057A1

    公开(公告)日:2021-02-04

    申请号:US17074362

    申请日:2020-10-19

    Abstract: Automated inventory management and material (or container) handling removes the requirement to operate fully automatically or all-manual using conventional task dedicated vertical storage and retrieval (S&R) machines. Inventory requests Automated vehicles plan their own movements to execute missions over a container yard, warehouse aisles or roadways, sharing this space with manually driven trucks. Automated units drive to planned speed limits, manage their loads (stability control), stop, go, and merge at intersections according human driving rules, use on-board sensors to identify static and dynamic obstacles, and human traffic, and either avoid them or stop until potential collision risk is removed. They identify, localize, and either pick-up loads (pallets, container, etc.) or drop them at the correctly demined locations. Systems without full automation can also implement partially automated operations (for instance load pick-up and drop), and can assure inherently safe manually operated vehicles (i.e., trucks that do not allow collisions).

    System and method for generating precise road lane map data

    公开(公告)号:US12298149B2

    公开(公告)日:2025-05-13

    申请号:US18418752

    申请日:2024-01-22

    Abstract: An in-vehicle system for generating precise, lane-level road map data includes a GPS receiver operative to acquire positional information associated with a track along a road path. An inertial sensor provides time local measurement of acceleration and turn rate along the track, and a camera acquires image data of the road path along the track. A processor is operative to receive the local measurement from the inertial sensor and image data from the camera over time in conjunction with multiple tracks along the road path, and improve the accuracy of the GPS receiver through curve fitting. One or all of the GPS receiver, inertial sensor and camera are disposed in a smartphone. The road map data may be uploaded to a central data repository for post processing when the vehicle passes through a WiFi cloud to generate the precise road map data, which may include data collected from multiple drivers.

    SYSTEM AND METHOD FOR GENERATING PRECISE ROAD LANE MAP DATA

    公开(公告)号:US20240159559A1

    公开(公告)日:2024-05-16

    申请号:US18418752

    申请日:2024-01-22

    Abstract: An in-vehicle system for generating precise, lane-level road map data includes a GPS receiver operative to acquire positional information associated with a track along a road path. An inertial sensor provides time local measurement of acceleration and turn rate along the track, and a camera acquires image data of the road path along the track. A processor is operative to receive the local measurement from the inertial sensor and image data from the camera over time in conjunction with multiple tracks along the road path, and improve the accuracy of the GPS receiver through curve fitting. One or all of the GPS receiver, inertial sensor and camera are disposed in a smartphone. The road map data may be uploaded to a central data repository for post processing when the vehicle passes through a WiFi cloud to generate the precise road map data, which may include data collected from multiple drivers.

    Chat and knowledge domain driven task-specific query and response system

    公开(公告)号:US11257479B2

    公开(公告)日:2022-02-22

    申请号:US16653625

    申请日:2019-10-15

    Inventor: Charles J. Cohen

    Abstract: A system and method has the ability to take information from a wide variety of sources and package it in a form that a user can accesses in a conversationally intuitive manner. Task or knowledge domain-specific knowledge bases acquired from structured and free-text sources, data extracted describing world state, or natural language and spoken language knowledge are used to “intelligently” respond to an operator's or user's verbal or written request for information. In the example of a maintenance system, a user may submit status-related questions, and the system might then verbalize a list of instructions of what further diagnostic information the maintainer should acquire through tests. As the maintainer verbalizes to the system their findings, the system might narrow down its assessment of likely faults and eventually verbalize to the maintainer specific steps, and potentially images and diagrams describing the necessary corrective maintenance. Additional applications are presented in the disclosure.

    AUTOMATED WAREHOUSING USING ROBOTIC FORKLIFTS OR OTHER MATERIAL HANDLING VEHICLES

    公开(公告)号:US20210326800A1

    公开(公告)日:2021-10-21

    申请号:US17074341

    申请日:2020-10-19

    Abstract: Automated inventory management and material (or container) handling removes the requirement to operate fully automatically or all-manual using conventional task dedicated vertical storage and retrieval (S&R) machines. Inventory requests Automated vehicles plan their own movements to execute missions over a container yard, warehouse aisles or roadways, sharing this space with manually driven trucks. Automated units drive to planned speed limits, manage their loads (stability control), stop, go, and merge at intersections according human driving rules, use on-board sensors to identify static and dynamic obstacles, and human traffic, and either avoid them or stop until potential collision risk is removed. They identify, localize, and either pick-up loads (pallets, container, etc.) or drop them at the correctly demined locations. Systems without full automation can also implement partially automated operations (for instance load pick-up and drop), and can assure inherently safe manually operated vehicles (i.e., trucks that do not allow collisions).

    AUTOMATED WAREHOUSING USING ROBOTIC FORKLIFTS OR OTHER MATERIAL HANDLING VEHICLES

    公开(公告)号:US20210035056A1

    公开(公告)日:2021-02-04

    申请号:US17074351

    申请日:2020-10-19

    Abstract: Automated inventory management and material (or container) handling removes the requirement to operate fully automatically or all-manual using conventional task dedicated vertical storage and retrieval (S&R) machines. Inventory requests Automated vehicles plan their own movements to execute missions over a container yard, warehouse aisles or roadways, sharing this space with manually driven trucks. Automated units drive to planned speed limits, manage their loads (stability control), stop, go, and merge at intersections according human driving rules, use on-board sensors to identify static and dynamic obstacles, and human traffic, and either avoid them or stop until potential collision risk is removed. They identify, localize, and either pick-up loads (pallets, container, etc.) or drop them at the correctly demined locations. Systems without full automation can also implement partially automated operations (for instance load pick-up and drop), and can assure inherently safe manually operated vehicles (i.e., trucks that do not allow collisions).

Patent Agency Ranking