Abstract:
A system for obtaining low-angle circumferential optical access to an eye of a subject. The system includes a light source to generate a beam of light; a beam steering mechanism to steer the beam of light a focusing lens to focus the beam of light; and a contact lens to direct the beam of light into the eye of the subject, the contact lens including a tapered reflective surface to direct the beam of light into the eye of the subject.
Abstract:
Disclosed herein are systems and method for segmentation and identification of structured features in images. According to an aspect, a method may include representing an image as a graph of nodes connected together by edges. For example, the image may be an ocular image showing layered structures or other features of the retina. The method may also include adding, to the graph, nodes adjacent to nodes along first and second sides of the graph. The added nodes may have edge weights less than the nodes along the first and second sides of the graph. Further, the method may include assigning start and end points to any of the added nodes along the first and second sides, respectively. The method may also include graph cutting between the start and end points for identifying a feature in the image.
Abstract:
Disclosed herein are systems and method for segmentation and identification of structured features in images. According to an aspect, a method may include representing an image as a graph of nodes connected together by edges. For example, the image may be an ocular image showing layered structures or other features of the retina. The method may also include adding, to the graph, nodes adjacent to nodes along first and second sides of the graph. The added nodes may have edge weights less than the nodes along the first and second sides of the graph. Further, the method may include assigning start and end points to any of the added nodes along the first and second sides, respectively. The method may also include graph cutting between the start and end points for identifying a feature in the image.
Abstract:
Systems and methods for structured illumination super-resolution phase microscopy are disclosed. According to an aspect, an imaging system includes a light source configured to generate light. The system also includes a diffraction grating positioned to receive and diffract the output light. The system also includes a sample holder positioned to receive the diffracted light for transmission through a sample. Further, the system includes an image detector positioned to receive the light transmitted through the sample and configured to generate image data based on the received light. The system also includes a computing device configured to apply subdiffraction resolution reconstruction to the image data for generating an image of the sample.
Abstract:
A system for obtaining low-angle circumferential optical access to an eye of a subject. The system includes a light source to generate a beam of light; a beam steering mechanism to steer the beam of light a focusing lens to focus the beam of light; and a contact lens to direct the beam of light into the eye of the subject, the contact lens including a tapered reflective surface to direct the beam of light into the eye of the subject.
Abstract:
Methods and computer program products for quantitative three-dimensional (“3D”) image correction in optical coherence tomography. Using the methods and computer program products, index interface (refracting) surfaces from the raw optical coherence tomography (“OCT”) dataset from an OCT system can be segmented. Normal vectors or partial derivatives of the curvature at a refracting surface can be calculated to obtain a refracted image voxel. A new position of each desired refracted image voxel can be iteratively computed. New refracted corrected voxel positions to an even sampling grid can be interpolated to provide corrected image data. In some embodiments, clinical outputs from the corrected image data can be computed.
Abstract:
Systems and methods for structured illumination super-resolution phase microscopy are disclosed. According to an aspect, an imaging system includes a light source configured to generate light. The system also includes a diffraction grating positioned to receive and diffract the output light. The system also includes a sample holder positioned to receive the diffracted light for transmission through a sample. Further, the system includes an image detector positioned to receive the light transmitted through the sample and configured to generate image data based on the received light. The system also includes a computing device configured to apply subdiffraction resolution reconstruction to the image data for generating an image of the sample.
Abstract:
A system for obtaining low-angle circumferential optical access to an eye of a subject. The system includes a light source to generate a beam of light; a beam steering mechanism to steer the beam of light a focusing lens to focus the beam of light; and a contact lens to direct the beam of light into the eye of the subject, the contact lens including a tapered reflective surface to direct the beam of light into the eye of the subject.
Abstract:
Stereoscopic display systems and methods for displaying surgical data and information in a surgical microscope are disclosed herein. According to an aspect, a system includes first and second eyepieces. The system includes a display having first and second display portions, configured to display first images in the first display portion, and configured to display second images in the second display portion. The first image and the second image are projected along a first pathway and a second pathway. The system includes a first optical element positioned to relay the first images into the first eyepiece. The system includes a second optical element positioned to relay the second images into the second eyepiece.
Abstract:
Systems and methods for long working distance optical coherence tomography (OCT). According to an aspect, an OCT system includes a reference arm. Further, the OCT system includes a sample arm operably connected to the reference arm. The sample arm includes a scanner configured to scan an optical beam. The sample arm also includes an objective positioned a predetermined distance from the scanner, configured to receive the optical beam, and to direct the optical beam to an object positioned at about the predetermined distance from the scanner for imaging of the object.