Abstract:
The present invention is directed to a method and system for improved aiming during Optical Coherence Tomography (OCT) on young children and those unable to cooperate with OCT imaging by synchronization with retinal birefringence scanning (RBS). OCT is performed without knowing whether or not the subject is looking at the intended target. The present invention combines OCT retinal imaging, such as, but not limited to, time domain OCT, SDOCT, or SSOCT, with RBS technology that provides accurate information on the presence or absence of foveal fixation. Therefore, the present invention only analyzes data during foveal fixation. A system combining OCT with RBS is implemented such that both systems co-operate in a specified alignment, such that when the RBS fixation detection system detects alignment with the fovea of the eye, the OCT system will be aimed at the retinal region of interest, usually but not necessarily including the macular area.
Abstract:
Stereoscopic display systems and methods for displaying surgical data and information in a surgical microscope are disclosed herein. According to an aspect, a system includes first and second eyepieces. The system includes a display having first and second display portions, configured to display first images in the first display portion, and configured to display second images in the second display portion. The first image and the second image are projected along a first pathway and a second pathway. The system includes a first optical element positioned to relay the first images into the first eyepiece. The system includes a second optical element positioned to relay the second images into the second eyepiece.
Abstract:
The present disclosure describes a deep learning algorithm with the ability to provide a high-performance classifier to predict either the presence of geographic atrophy (GA), or the likelihood of progression from intermediate age-related macular degeneration to GA. The system can also be used for broader applications outside of eye disease.
Abstract:
Systems and methods for providing surface contrast to display images for microsurgical applications are disclosed. According to an aspect, an imaging system includes an OCT apparatus configured to capture OCT data of an eye. The OCT image data can include depth-resolved images of reflected light intensity over a period of time. The imaging system also includes a controller configured to determine movement of the eye relative to the OCT imaging field-of-view. The controller may also determine a location within the imaged portion of the eye which tracks with the eye movement. Further, the controller may apply a color gradient to render OCT images of the eye based on a position relative to the determined location of the eye tracking location. The controller may also control a display to display the OCT images with the applied color gradient.
Abstract:
Stereoscopic display systems and methods for displaying surgical data and information in a surgical microscope are disclosed herein. According to an aspect, a system includes first and second eyepieces. The system includes a display having first and second display portions, configured to display first images in the first display portion, and configured to display second images in the second display portion. The first image and the second image are projected along a first pathway and a second pathway. The system includes a first optical element positioned to relay the first images into the first eyepiece. The system includes a second optical element positioned to relay the second images into the second eyepiece.
Abstract:
A method of fusing 2D and 3D imaging data includes receiving 3D imaging data and 2D color imaging data of a region of interest, segmenting the 3D imaging data to identify anatomical features in the region of interest, including surfaces of the anatomical features and a corresponding volume of the anatomical features, and generating an image by fusing the 2D color imaging data to the 3D imaging data according to the surfaces, the corresponding volumes, and identities of the anatomical features. In some cases, the 3D imaging data is captured via optical coherence tomography. In some cases, the 2D color imaging data is captured via color microscopy. In some cases, the method further includes rendering a final image at an output plane by casting a ray through the fused 3D imaging data for each pixel and viewpoint of the output image plane for the image.
Abstract:
A retinal vessel shadow view optical coherence tomography (RVSV-OCT) image can be created by receiving, at an enhanced OCT processing system, volumetric OCT scan of a patient. The system can segment the volumetric OCT scan to determine layer boundaries and delineate a boundary of interest based on the determined layer boundaries of the segmented volumetric OCT scan. En face vascular information can be extracted to create an RVSV-OCT image by determining a first offset from the boundary of interest and a second offset from the boundary of interest; extracting volumetric data from an area between the first offset and the second offset to create a three-dimensional volume; and identifying a two-dimensional surface from the three-dimensional volume, the two-dimensional surface being the RVSV-OCT image. The RVSV-OCT image can be provided for analysis, for example, to evaluate retinal vascular disease in preterm infants at risk for retinopathy of prematurity.
Abstract:
Systems and methods for providing surface contrast to display images for micro-surgical applications are disclosed. According to an aspect, an imaging system includes an OCT apparatus configured to capture OCT data of an eye. The OCT image data can include depth-resolved images of reflected light intensity over a period of time. The imaging system also includes a controller configured to determine movement of the eye relative to the OCT imaging field-of-view. The controller may also determine a location within the imaged portion of the eye which tracks with the eye movement. Further, the controller may apply a color gradient to render OCT images of the eye based on a position relative to the determined location of the eye tracking location. The controller may also control a display to display the OCT images with the applied color gradient.
Abstract:
A method of imaging intraocular structures, includes capturing, via an optical coherence tomography (OCT) system, an image of features of an eye, determining geometric dimensions of elements within the eye from the image, creating an optical model of the eye with respect to the intraoperative OCT system using at least one of the determined geometric dimensions of the elements within the eye from the image and known dimensions of elements within the intraoperative OCT system, and applying the optical model to the image. An OCT system includes an optical system and a processing system coupled to the optical system. The processing system includes a processor, memory, and instructions stored on the memory that when executed by the processor, direct the intraoperative OCT system to perform the method of imaging intraocular structures including creating the optical model and applying the optical model to the image.
Abstract:
The present invention is directed to a method and system for improved aiming during Optical Coherence Tomography (OCT) on young children and those unable to cooperate with OCT imaging by synchronization with retinal birefringence scanning (RBS). OCT is performed without knowing whether or not the subject is looking at the intended target. The present invention combines OCT retinal imaging, such as, but not limited to, time domain OCT, SDOCT, or SSOCT, with RBS technology that provides accurate information on the presence or absence of foveal fixation. Therefore, the present invention only analyzes data during foveal fixation. A system combining OCT with RBS is implemented such that both systems co-operate in a specified alignment, such that when the RBS fixation detection system detects alignment with the fovea of the eye, the OCT system will be aimed at the retinal region of interest, usually but not necessarily including the macular area.