Abstract:
One illustrative method disclosed herein includes performing a first plurality of epitaxial deposition processes to form a first plurality of semiconductor materials selectively above the N-active region while masking the P-active region, performing a second plurality of epitaxial deposition processes to form a second plurality of semiconductor materials selectively above the P-active region while masking the N-active region, forming an N-type transistor in and above the N-active region and forming a P-type transistor in and above the P-active region.
Abstract:
Fin-type transistor fabrication methods and structures are provided having extended embedded stress elements. The methods include, for example: providing a gate structure extending over a fin extending above a substrate; using isotropic etching and anisotropic etching to form an extended cavity within the fin, where the extended cavity in part undercuts the gate structure, and where the using of the isotropic etching and the anisotropic etching deepens the extended cavity into the fin below the undercut gate structure; and forming an embedded stress element at least partially within the extended cavity, including below the gate structure.
Abstract:
A method includes forming a layer of silicon-carbon on an N-active region, performing a common deposition process to form a layer of a first semiconductor material on the layer of silicon-carbon and on the P-active region, masking the N-active region, forming a layer of a second semiconductor material on the first semiconductor material in the P-active region and forming N-type and P-type transistors. A device includes a layer of silicon-carbon positioned on an N-active region, a first layer of a first semiconductor positioned on the layer of silicon-carbon, a second layer of the first semiconductor material positioned on a P-active region, a layer of a second semiconductor material positioned on the second layer of the first semiconductor material, and N-type and P-type transistors.