Abstract:
One illustrative method disclosed herein includes performing a first plurality of epitaxial deposition processes to form a first plurality of semiconductor materials selectively above the N-active region while masking the P-active region, performing a second plurality of epitaxial deposition processes to form a second plurality of semiconductor materials selectively above the P-active region while masking the N-active region, forming an N-type transistor in and above the N-active region and forming a P-type transistor in and above the P-active region.
Abstract:
A method includes forming a layer of silicon-carbon on an N-active region, performing a common deposition process to form a layer of a first semiconductor material on the layer of silicon-carbon and on the P-active region, masking the N-active region, forming a layer of a second semiconductor material on the first semiconductor material in the P-active region and forming N-type and P-type transistors. A device includes a layer of silicon-carbon positioned on an N-active region, a first layer of a first semiconductor positioned on the layer of silicon-carbon, a second layer of the first semiconductor material positioned on a P-active region, a layer of a second semiconductor material positioned on the second layer of the first semiconductor material, and N-type and P-type transistors.
Abstract:
A device includes a substrate having an N-active region and a P-active region, a layer of silicon-carbon positioned on an upper surface of the N-active region, a first layer of a first semiconductor material positioned on the layer of silicon-carbon, a second layer of the first semiconductor material positioned on an upper surface of the P-active region, and a layer of a second semiconductor material positioned on the second layer of the first semiconductor material. An N-type transistor is positioned in and above the N-active region and a P-type transistor is positioned in and above the P-active region.
Abstract:
A device includes a substrate having an N-active region and a P-active region, a layer of silicon-carbon positioned on an upper surface of the N-active region, a first layer of a first semiconductor material positioned on the layer of silicon-carbon, a second layer of the first semiconductor material positioned on an upper surface of the P-active region, and a layer of a second semiconductor material positioned on the second layer of the first semiconductor material. An N-type transistor is positioned in and above the N-active region and a P-type transistor is positioned in and above the P-active region.
Abstract:
One illustrative method disclosed herein includes performing a first plurality of epitaxial deposition processes to form a first plurality of semiconductor materials selectively above the N-active region while masking the P-active region, performing a second plurality of epitaxial deposition processes to form a second plurality of semiconductor materials selectively above the P-active region while masking the N-active region, forming an N-type transistor in and above the N-active region and forming a P-type transistor in and above the P-active region.
Abstract:
A method includes forming a layer of silicon-carbon on an N-active region, performing a common deposition process to form a layer of a first semiconductor material on the layer of silicon-carbon and on the P-active region, masking the N-active region, forming a layer of a second semiconductor material on the first semiconductor material in the P-active region and forming N-type and P-type transistors. A device includes a layer of silicon-carbon positioned on an N-active region, a first layer of a first semiconductor positioned on the layer of silicon-carbon, a second layer of the first semiconductor material positioned on a P-active region, a layer of a second semiconductor material positioned on the second layer of the first semiconductor material, and N-type and P-type transistors.