Abstract:
A device and method for detecting by fluorescence microbial growth from sample substances are disclosed. For example, a method for the detection of visible-band fluorescence signals generated by at least one fluorescing compound excited by ultraviolet energy, comprising exciting said at least one fluorescing compound with ultraviolet energy emitted from a light-emitting diode comprising wavelengths below 400 nanometers, and detecting a visible-band fluorescence signal generated by said at least one excited fluorescing compound with at least one light detector sensitive to electromagnetic energy comprising wavelengths greater than or equal to 400 nanometers wavelength. For example, a device for detecting visible-band fluorescence signals generated by at least one fluorescing compound excited by ultraviolet energy, comprising at least one ultraviolet light-emitting diode generating electromagnetic radiation comprising wavelengths below 400 nanometers and capable of exciting the at least one fluorescing compound, at least one light detector sensitive to electromagnetic energy comprising wavelengths greater than or equal to 400 nanometers wavelength for the detection of visible-band fluorescence signals generated by the at least one fluorescing compound.
Abstract:
A new device and method for detecting the presence of living microorganisms in test samples are described. The device comprises a container with at least one section transparent to light, a growth zone located in said container containing a mixture of growth media capable of supporting growth of the microorganisms, and at least one indicator substrate that changes its optical properties due to growth of the microorganisms. A detection zone is located in the container adjacent to the transparent section, and a barrier layer comprising porous solid material separates the two zones, allowing diffusion of molecules and ions of metabolic by-products of the organisms, while preventing microorganisms and particulate matter of the test sample from penetrating into the detection zone.
Abstract:
A device and method for detecting by fluorescence microbial growth from sample substances are disclosed. For example, a method for the detection of visible-band fluorescence signals generated by at least one fluorescing compound excited by ultraviolet energy, comprising exciting said at least one fluorescing compound with ultraviolet energy emitted from a light-emitting diode comprising wavelengths below 400 nanometers, and detecting a visible-band fluorescence signal generated by said at least one excited fluorescing compound with at least one light detector sensitive to electromagnetic energy comprising wavelengths greater than or equal to 400 nanometers wavelength. For example, a device for detecting visible-band fluorescence signals generated by at least one fluorescing compound excited by ultraviolet energy, comprising at least one ultraviolet light-emitting diode generating electromagnetic radiation comprising wavelengths below 400 nanometers and capable of exciting the at least one fluorescing compound, at least one light detector sensitive to electromagnetic energy comprising wavelengths greater than or equal to 400 nanometers wavelength for the detection of visible-band fluorescence signals generated by the at least one fluorescing compound.
Abstract:
A new device and method for detecting the presence of living microorganisms in test samples are described. The device includes a container having at least one section transparent to light with an incubation zone defined in the container, the incubation zone containing growth media in which the sample is cultured. A detection zone containing a matrix composed of a polymeric material which is substantially transparent to light, and at least one indicator reagent sensitive to carbon dioxide gas generated by the microorganisms in the incubation zone is located in the transparent section of the matrix. The matrix is configured to facilitate penetration of external light aimed at the transparent section of the container and interaction of the external light with the indicator reagent to yield interactive light that escapes through the transparent section of the container, said interactive light is being indicative of the presence and/or concentration of the microorganisms.
Abstract:
A method of making a test device comprised of a container divided into two chambers, each holding a volume of a clear test liquid, the chambers separated by a porous barrier. The liquid is introduced into the lower chamber by adding a liquid to the upper chamber through the open top of the container and then applying a vacuum to completely evacuate air from the lower chamber by drawing the air through the barrier and liquid in the upper chamber. Restoring air pressure forces liquid in the upper chamber into the lower chamber, to completely fill the same while leaving a volume of liquid in the upper chamber. The application of a vacuum is preferably carried out by placing the container with liquid in a receptacle containing a liquid to be boiled, heating the liquid to boil the same and thereafter condensing the vapor with the receptacle sealed to develop a very high vacuum which draws the air out from the lower chamber of the container. The boiling can be done with the receptacle sealed to develop a higher temperature and later vented prior to being resealed for cooling and condensing of the vaporized liquid to further enhance the level of vacuum achieved.
Abstract:
A new device and method to detect the presence of live microorganisms are described. The device employs a liquid phase which supports microbial growth by utilizing appropriate media. A secondary phase which consists of semi-liquid material forms a barrier layer through which only small particles can diffuse and which prevent the presence of any large particles. Noise-free optical measurements are carried out at the barrier layer which are indicative of metabolic changes associated with microbial growth.
Abstract:
A diagnostic microbiological testing apparatus and method includes at least one test tray including a plurality of reaction chambers, a light source disposed proximate to the test tray for directing light, at an excitation wavelength of a fluorescence emitting agent contained within the reaction chambers, at the test tray, a filter for passing therethrough only light generated by a fluorescence emitting reaction resulting from the interaction of the fluorescence emitting agent and a sample, and an imaging mechanism for detecting only the light generated by the fluorescence emitting reaction at the emission wavelength simultaneously from the plurality of reaction chambers.
Abstract:
A battery is provided that uses supercapacitors and battery cells connected by switches among themselves and to input and output terminals via multiplexed selection under the control of a microprocessor or microcontroller. The supercapacitors and battery cells of the battery may independently, or in combination, power an electric vehicle. The battery may be operated in several modes, at least one of which may be used to power an electric vehicle long enough to reach a charging station in connection with charge on the battery cells being partially or almost completely depleted. The battery may also deliver charge while the battery cells and/or the supercapacitors are being charged. The battery may be fast charging on-the-run in that the supercapacitors may be charged faster than the battery cells permitting an electric vehicle to be powered without spending considerable time, that would otherwise be required at a conventional charging station with traditional batteries.
Abstract:
The disclosure includes a method of generating and presenting non-processed streaming audio data and non-processed streaming video data to a first viewer and a second viewer. The method may include presenting, via a commercial television display unit, the non-processed streaming video data to at least one of the commentator, the first viewer, and the second viewer. The method may include generating the non-processed streaming audio data related to the live event by the commentator, and transferring the non-processed streaming audio data via an Internet to the first viewer and the second viewer. Also, the method may include providing the first viewer and the second viewer with a capability to synchronize a video presentation time of the non-processed streaming video data with an audio presentation time of the non-processed streaming audio data.
Abstract:
The disclosure includes a method of generating and presenting digital streaming data to a viewer. The digital streaming data comprises streaming video data depicted from a live event and streaming audio data generated by a commentator, the streaming audio data related to the live event. In many embodiments, the method includes presenting the streaming video data to the commentator and the viewer and generating streaming audio data by the commentator related to the live event. Methods may also include transferring the streaming audio data via an Internet to the viewer and providing the viewer with synchronization means to synchronize the streaming video data with the streaming audio data.