Abstract:
Disclosed is a mask blank substrate for use in lithography, wherein a main surface of the substrate satisfies a relational equation of (BA70−BA30)/(BD70−BD30)≥350 (%/nm), and has a maximum height (Rmax)≤1.2 nm in a relation between a bearing area (%) and a bearing depth (nm) obtained by measuring, with an atomic force microscope, an area of 1 μm×1 μm in the main surface on the side of the substrate where a transfer pattern is formed, wherein BA30 is defined as a bearing area of 30%, BA70 is defined as a bearing area of 70%, and BD70 and BD30 are defined to respectively represent bearing depths for the bearing area of 30% and the bearing area of 70%.
Abstract:
Disclosed is a mask blank substrate for use in lithography, wherein the main surface on which the transfer pattern of the substrate is formed has a root mean square roughness (Rms) of not more than 0.15 nm obtained by measuring an area of 1 μm×1 μm with an atomic force microscope, and has a power spectrum density of not more than 10 nm4 at a spatial frequency of not less than 1 μm−1.
Abstract:
An object of the present invention is to provide a mask blank substrate and the like that enables critical defects to be reliably detected as a result of reducing the number of detected defects, including pseudo defects, even when using highly sensitive defect inspection apparatuses that use light of various wavelengths. The present invention relates to a mask blank substrate that is used in lithography, wherein the power spectral density at a spatial frequency of 1×10−2 μm−1 to 1 μm−1, obtained by measuring a 0.14 mm×0.1 mm region on a main surface of the mask blank substrate on the side of which a transfer pattern is formed at 640×480 pixels with a white-light interferometer, is not more than 4×106 nm4, and the power spectral density at a spatial frequency of not less than 1 μm−1, obtained by measuring a 1 μm×1 μm region on the main surface with an atomic force microscope, is not more than 10 nm4.
Abstract:
An object of the present invention is to provide a substrate with a multilayer reflective film that enables the number of detected pseudo defects, to be reduced even when using highly sensitive defect inspection apparatuses using light of various wavelengths, and in particular, is capable of achieving a level of smoothness required of substrates with a multilayer reflective film while reliably detecting critical defects as a result of reducing the number of detected pseudo defects, as well as a method of manufacturing the same.The present invention relates to a method of manufacturing a substrate with a multilayer reflective film having a multilayer reflective film, obtained by alternately laminating a high refractive index layer and a low refractive index layer, on the main surface of a mask blank substrate on the side of which a transfer pattern is formed, comprising a step of: depositing the multilayer reflective film on the main surface by ion beam sputtering using targets composed of a high refractive index material and a low refractive index material; wherein, during the ion beam sputtering, sputtered particles of the high refractive index material and the low refractive index material are made to enter at prescribed incident angle relative to the normal of the main surface so that the power spectral density in a prescribed spatial frequency region is a prescribed value.
Abstract:
A method of forming a glass body, the method including pressing titania-doped silica soot to form a molded body, consolidating the molded body by heating the molded body, annealing the consolidated molded body, and polishing at least one surface of the annealed molded body to form the glass body. After the polishing, the at least one surface of the glass body has a waviness amplitude of about 0.60 nm or less in the spatial frequency range of 0.05 mm−1 or more and 0.2 mm−1 or less.
Abstract:
Provided are a mask blank substrate processing device, a mask blank substrate processing method, a mask blank substrate fabrication method, a mask blank fabrication method, and a transfer mask fabrication method, for surface processing a mask blank substrate such that a high-level smoothness and a low-defect quality are satisfied. A mask blank substrate processing device (1) comprises: substrate support means (3) for supporting a substrate (Y); a catalytic surface plate (4) comprising a catalytic face (4a) which is positioned opposite the principal surface of the substrate (Y); relative movement means (5) for causing the catalytic face (4a) and the principal surface to move relative to each other in a state of being either in contact or in close proximity; first processing fluid supply means (6) which supplies a first processing fluid for CARE to the principal surface; and physical cleaning means (7) for removing foreign matter which has adhered to the principal surface from the principal surface, using a physical action.
Abstract:
An object of the present invention is to provide a mask blank substrate and the like that enables critical defects to be reliably detected as a result of reducing the number of detected defects, including pseudo defects, even when using highly sensitive defect inspection apparatuses that use light of various wavelengths. The present invention relates to a mask blank substrate that is used in lithography, wherein the power spectral density at a spatial frequency of 1×10−2 μm−1 to 1 μm−1, obtained by measuring a 0.14 mm×0.1 mm region on a main surface of the mask blank substrate on the side of which a transfer pattern is formed at 640×480 pixels with a white-light interferometer, is not more than 4×106 nm4, and the power spectral density at a spatial frequency of not less than 1 μm−1, obtained by measuring a 1 μm×1 μm region on the main surface with an atomic force microscope, is not more than 10 nm4.
Abstract:
A substrate with a multilayer reflective film capable of facilitating the discovery of contaminants, scratches and other critical defects by inhibiting the detection of pseudo defects attributable to surface roughness of a substrate or film in a defect inspection using a highly sensitive defect inspection apparatus.The substrate with a multilayer reflective film has a multilayer reflective film obtained by alternately laminating a high refractive index layer and a low refractive index layer on a main surface of a mask blank substrate used in lithography, wherein an integrated value I of the power spectrum density (PSD) at a spatial frequency of 1 μm−1 to 10 μm−1 of the surface of the substrate with a multilayer reflective film, obtained by measuring a region measuring 3 μm×3 μm with an atomic force microscope, is not more than 180×10−3 nm3, and the maximum value of the power spectrum density (PSD) at a spatial frequency of 1 μm−1 to 10 μm−1 is not more than 50 nm4.
Abstract:
Provided is a mask blank glass substrate that has high surface smoothness, that is formed with a fiducial mark capable of improving the detection accuracy of a defect position or the like, and that enables reuse or recycling of a glass substrate included therein. An underlayer is formed on a main surface, on the side where a transfer pattern is to be formed, of a glass substrate for a mask blank. The underlayer serves to reduce surface roughness of the main surface of the glass substrate or to reduce defects of the main surface of the glass substrate. A surface of the underlayer is a precision-polished surface. A fiducial mark which provides a reference for a defect position in defect information is formed on the underlayer.
Abstract:
An object of the present invention is to provide a substrate with a multilayer reflective film and the like used in the manufacturing of a reflective mask blank for EUV lithography which is to be subjected to dry etching with a Cl-based gas, wherein in the substrate with the multilayer reflective film, the loss of protective films by the dry etching and subsequent wet cleaning is very limited. The present invention is a substrate with a multilayer reflective film used in the manufacturing of a reflective mask blank for EUV lithography, comprising a substrate, a multilayer reflective film disposed on the substrate to reflect EUV light, and a protective film disposed on the multilayer reflective film to protect the multilayer reflective film, the protective film includes an alloy containing at least two metals, the alloy being an all-proportional solid solution.