Abstract:
The invention relates to a method for capturing organometallic impurities in a gasoline-type hydrocarbon feedstock containing sulfur compounds and olefins, wherein said feedstock is brought into contact with hydrogen and a capture mass comprising a nickel-based active phase, and a mesoporous and macroporous alumina substrate having a bimodal distribution of mesopores and wherein: —the volume of mesopores having a diameter greater than or equal to 2 nm and less than 18 nm corresponds to between 10 and 30% by volume of the total pore volume of said substrate; —the volume of mesopores with a diameter greater than or equal to 18 nm and less than 50 nm corresponds to between 30 and 50% by volume of the total pore volume of said substrate.
Abstract:
The invention concerns a method for converting a feedstock selected from sugars or sugar alcohols, alone or in a mixture, into mono- or polyoxygenated compounds, wherein the feedstock is contacted with at least one heterogeneous catalyst comprising a support selected from perovskites of formula ABO3, in which A is selected from the elements Mg, Ca, Sr and Ba and B is selected from the elements Fe, Mn, Ti and Zr, and the oxides of elements selected from lanthanum, neodymium, yttrium and cerium, alone or in a mixture, which oxides can be doped with at least one element selected from alkali metals, alkaline earths and rare earths, in a reducing atmosphere, at a temperature of 100° C. to 300° C. and at a pressure of 0.1 MPa to 50 MPa.
Abstract:
Method for treating a partially desulphurised sulphur-containing hydrocarbon feedstock from a preliminary hydrodesulphurisation step in the presence of a catalyst comprising an active phase comprising a group VII metal and a mesoporous and macroporous alumina support comprising a bimodal distribution of mesopores, wherein: -the volume of mesopores having a diameter greater than or equal to 2 nm and less than 18 nm is between 10 and 30% by volume of the total pore volume of the support; -the volume of mesopores having a diameter greater than or equal to 18 nm and less than 50 nm is between 30 and 50% by volume of the total pore volume of the support; -the volume of macropores having a diameter greater than or equal to 50 nm and less than 8000 nm is between 30 and 50% by volume of the total pore volume of the support.
Abstract:
Disclosed is a method for the hydrodesulfurization of an olefinic gasoline cut containing sulfur, wherein said gasoline cut, hydrogen and a catalyst are brought into contact, said catalyst comprising a group VIB metal, a group VIII metal and a mesoporous and macroporous alumina substrate having a bimodal mesopore distribution and wherein: —the volume of mesopores having a diameter greater than or equal to 2 nm and less than 18 nm corresponds to between 10 and 30% by volume of the total pore volume of said substrate; —the volume of mesopores having a diameter greater than or equal to 18 nm and less than 50 nm corresponds to between 30 and 50% by volume of the total pore volume of said substrate; —the volume of macropores having a diameter greater than or equal to 50 nm and less than 8000 nm corresponds to between 30 and 50% by volume of the total pore volume of said substrate.
Abstract:
A subject matter of the invention is a catalyst comprising a support and an active phase consisting of nickel, molybdenum and tungsten, and phosphorus, the nickel content, measured in the NiO form, is between 3% and 4% by weight; the molybdenum content, measured in the MoO3 form, is between 2% and 4% by weight; the tungsten content, measured in the WO3 form, is between 34% and 40% by weight; the phosphorus content, measured in the P2O5 form, is between 3% and 4% by weight, with respect to the total weight of the catalyst; the WO3/MoO3 molar ratio is between 5.3 and 12.4 mol/mol, the NiO/(WO3 + MoO3) molar ratio is between 0.20 and 0.33 mol/mol and the P2O5/(WO3 + MoO3) molar ratio is between 0.21 and 0.34 mol/mol. The invention also relates to its method of preparation and to its use in hydrotreating and/or hydrocracking.
Abstract:
The invention relates to a process for the hydrodesulfurization of a sulfur-containing olefinic gasoline cut in which said gasoline cut, hydrogen and a regenerated catalyst are brought into contact, said process being carried out at a temperature of between 200° C. and 400° C., a total pressure of between 1 and 3 MPa, an hourly space velocity, defined as being the flow rate by volume of feedstock relative to the volume of catalyst, of between 1 and 10 h−1; and a hydrogen/gasoline feedstock ratio by volume of between 100 and 1200 Sl/l, said regenerated catalyst resulting from an at least partially spent catalyst resulting from a process for the hydrodesulfurization of a sulfur-containing olefinic gasoline cut and comprises at least one metal from group VIII, at least one metal from group VIb and an oxide support.
Abstract:
The invention relates to a process for the hydrodesulfurization of a sulfur-containing olefinic gasoline cut in which said gasoline cut, hydrogen and a rejuvenated catalyst are brought into contact, said hydrodesulfurization process being carried out at a temperature of between 200° C. and 400° C., a total pressure of between 1 and 3 MPa, an hourly space velocity, defined as being the flow rate by volume of feedstock relative to the volume of catalyst, of between 1 and 10 h−1 and a hydrogen/gasoline feedstock ratio by volume of between 100 and 1200 Sl/l, said rejuvenated catalyst resulting from a hydrotreating process and comprises at least one metal from group VIII, at least one metal from group VIb, an oxide support and at least one organic compound containing oxygen and/or nitrogen and/or sulfur.
Abstract:
Process for transformation of a feedstock of lignocellulosic biomass and/or the carbohydrates, into mono-oxidized or poly-oxidized compounds, wherein the feedstock is contacted, simultaneously, with a catalytic system that comprises one or more homogeneous catalysts selected from Brønsted acids and heterogeneous catalysts comprising at least one metal selected from groups 6 to 11 and 14 of the periodic table, and a substrate selected from perovskites of formula ABO3, in which A is Mg, Ca, Sr, Ba, and La, and B is selected from Fe, Mn, Ti and Zr, oxides of lanthanum, neodymium, yttrium, cerium, and niobium, or mixtures thereof, and mixed oxides of aluminates of zinc, copper, and cobalt, or mixtures thereof, in the same reaction chamber, with at least one solvent, being water or water with at least one other solvent, under reducing atmosphere, and temperature of 50° C. to 300° C., and pressure of 0.5 MPa to 20 MPa.