BIMODAL PHY FOR LOW LATENCY IN HIGH SPEED INTERCONNECTS

    公开(公告)号:US20210182231A1

    公开(公告)日:2021-06-17

    申请号:US17184737

    申请日:2021-02-25

    Abstract: Systems, methods, and apparatuses including a Physical layer (PHY) block coupled to a Media Access Control layer (MAC) block via a PHY/MAC interface. Each of the PHY and MAC blocks include a plurality of Physical Interface for PCI Express (PIPE) registers. The PHY/MAC interface includes a low pin count PIPE interface comprising a small set of wires coupled between the PHY block and the MAC block. The MAC block is configured to multiplex command, address, and data over the low pin count PIPE interface to access the plurality of PHY PIPE registers, and the PHY block is configured to multiplex command, address, and data over the low pin count PIPE interface to access the plurality of MAC PIPE registers. The PHY block may also be selectively configurable to implement a PIPE architecture to operate in a PIPE mode and a serialization and deserialization (SERDES) architecture to operate in a SERDES mode.

    Bimodal PHY for low latency in high speed interconnects

    公开(公告)号:US10963415B2

    公开(公告)日:2021-03-30

    申请号:US16802209

    申请日:2020-02-26

    Abstract: Systems, methods, and apparatuses including a Physical layer (PHY) block coupled to a Media Access Control layer (MAC) block via a PHY/MAC interface. Each of the PHY and MAC blocks include a plurality of Physical Interface for PCI Express (PIPE) registers. The PHY/MAC interface includes a low pin count PIPE interface comprising a small set of wires coupled between the PHY block and the MAC block. The MAC block is configured to multiplex command, address, and data over the low pin count PIPE interface to access the plurality of PHY PIPE registers, and the PHY block is configured to multiplex command, address, and data over the low pin count PIPE interface to access the plurality of MAC PIPE registers. The PHY block may also be selectively configurable to implement a PIPE architecture to operate in a PIPE mode and a serialization and deserialization (SERDES) architecture to operate in a SERDES mode.

    High speed interconnect with channel extension

    公开(公告)号:US10931329B2

    公开(公告)日:2021-02-23

    申请号:US15394278

    申请日:2016-12-29

    Abstract: An apparatus includes an agent to facilitate communication in one of two or more modes, where a first of the two or more modes involves communication over links including a first number of lanes and a second of the two or more modes involves communication over links including a second number of lanes, and the first number is greater than the second number. The apparatus further includes a memory including data to indicate which of the two or modes applies to a particular link and a multiplexer to reverse lane numbering on links including either the first number of lanes or the second number of lanes.

    HIGH PERFORMANCE INTERCONNECT LINK STATE TRANSITIONS

    公开(公告)号:US20170109300A1

    公开(公告)日:2017-04-20

    申请号:US15393631

    申请日:2016-12-29

    Abstract: An exit pattern is sent to initiate exit from a partial width state, where only a portion of the available lanes of a link are used to transmit data and the remaining lanes are idle. The exit pattern is sent on the idle lanes, the exit pattern including an electrical ordered set (EOS), one or more fast training sequences (FTS), a start of data sequence (SDS), and a partial fast training sequence (FTSp). The SDS includes a byte number field to indicate a number of a bytes measured from a previous control interval of the link, and an end of the SDS is sent to coincide with a clean flit boundary on the active lanes. The partial width state is exited based on the exit pattern and data is sent on all available lanes following the exit from the partial width state.

    BIMODAL PHY FOR LOW LATENCY IN HIGH SPEED INTERCONNECTS

    公开(公告)号:US20200293480A1

    公开(公告)日:2020-09-17

    申请号:US16802209

    申请日:2020-02-26

    Abstract: Systems, methods, and apparatuses including a Physical layer (PHY) block coupled to a Media Access Control layer (MAC) block via a PHY/MAC interface. Each of the PHY and MAC blocks include a plurality of Physical Interface for PCI Express (PIPE) registers. The PHY/MAC interface includes a low pin count PIPE interface comprising a small set of wires coupled between the PHY block and the MAC block. The MAC block is configured to multiplex command, address, and data over the low pin count PIPE interface to access the plurality of PHY PIPE registers, and the PHY block is configured to multiplex command, address, and data over the low pin count PIPE interface to access the plurality of MAC PIPE registers. The PHY block may also be selectively configurable to implement a PIPE architecture to operate in a PIPE mode and a serialization and deserialization (SERDES) architecture to operate in a SERDES mode.

Patent Agency Ranking