Abstract:
Architectures and techniques are described to provide assistance to read electronic books. In particular, a computing device may receive input from an individual while the individual is reading an electronic book, such as voice input, gaze tracking input, touch screen input, and so on. Based on the input gathered while the individual reads the electronic book, the computing device may determine a particular portion of the electronic book, such as one or more words of the electronic book, that the individual is reading. The computing device may also utilize the input gathered while the individual reads the electronic book to determine whether the individual needs assistance in reading one or more words of the electronic book, such as assistance in pronouncing the one or more words. The computing device may then provide assistance to the individual to read the one or more words.
Abstract:
A user device receives a command to transmit information at a transmit power level specified by a wireless carrier. The user device makes a determination as to whether transmitting the information at the specified transmit power level will cause the user device to violate a condition. When it is determined that transmitting the information at the specified transmit power level will cause the user device to violate the condition, the user device dynamically computes a new transmit power level that is lower than the specified transmit power level. The user device then transmits the information at the new transmit power level.
Abstract:
Various embodiments are directed to systems and techniques for reducing power consumption in a mobile computing device. In one or more embodiments, a mobile computing device may be arranged to determine a user environment based on detected antenna impedance or detected current. After the user environment is determined, the mobile computing device may confirm that total radiation power (TRP) for the mobile computing device at an initial conducted power level exceeds the minimum TRP threshold required by the network carrier to receive acceptable quality of service (QoS). Based on the excess TRP for the particular user environment, the mobile computing device may determine a reduced conducted power level to be input to an antenna system. Accordingly, significant power savings may be achieved. To save additional power, the mobile computing device may automatically adjust and/or improve antenna impedance matching based on user environment allowing a further reduction in conducted power.
Abstract:
Various embodiments are directed to systems and techniques for reducing power consumption in a mobile computing device. In one or more embodiments, a mobile computing device may be arranged to determine a user environment based on detected antenna impedance or detected current. After the user environment is determined, the mobile computing device may confirm that total radiation power (TRP) for the mobile computing device at an initial conducted power level exceeds the minimum TRP threshold required by the network carrier to receive acceptable quality of service (QoS). Based on the excess TRP for the particular user environment, the mobile computing device may determine a reduced conducted power level to be input to an antenna system. Accordingly, significant power savings may be achieved. To save additional power, the mobile computing device may automatically adjust and/or improve antenna impedance matching based on user environment allowing a further reduction in conducted power. Other embodiments are described and claimed.
Abstract:
A device such as a mobile phone includes a device to be hearing aid compatible. The device may include a first speaker for private listening operation and a second speaker that provides both speakerphone operation and hearing aid (e.g. telecoil) operation. The device may include a first use position for normal listening and a second, substantially different, use position for telecoil operation.
Abstract:
An electronic device in a low power mode, for example an eBook reader device, may use a fast awake module to quickly update a display. The electronic device may receive an interrupt, begin to awaken, present a cached pre-rendered image on the display, and may resume the low power mode or pre-render additional images to refill the cache before resuming the low power mode.
Abstract:
Various embodiments are directed to systems and techniques for reducing power consumption in a mobile computing device. In one or more embodiments, a mobile computing device may be arranged to determine a user environment based on detected antenna impedance or detected current. After the user environment is determined, the mobile computing device may confirm that total radiation power (TRP) for the mobile computing device at an initial conducted power level exceeds the minimum TRP threshold required by the network carrier to receive acceptable quality of service (QoS). Based on the excess TRP for the particular user environment, the mobile computing device may determine a reduced conducted power level to be input to an antenna system. Accordingly, significant power savings may be achieved. To save additional power, the mobile computing device may automatically adjust and/or improve antenna impedance matching based on user environment allowing a further reduction in conducted power.
Abstract:
Various embodiments are directed to systems and techniques for reducing power consumption in a mobile computing device. In one or more embodiments, a mobile computing device may be arranged to determine a user environment based on detected antenna impedance or detected current. After the user environment is determined, the mobile computing device may confirm that total radiation power (TRP) for the mobile computing device at an initial conducted power level exceeds the minimum TRP threshold required by the network carrier to receive acceptable quality of service (QoS). Based on the excess TRP for the particular user environment, the mobile computing device may determine a reduced conducted power level to be input to an antenna system. Accordingly, significant power savings may be achieved. To save additional power, the mobile computing device may automatically adjust and/or improve antenna impedance matching based on user environment allowing a further reduction in conducted power. Other embodiments are described and claimed.
Abstract:
A device such as a mobile phone includes a device to be hearing aid compatible. The device may include a first speaker for private listening operation and a second speaker that provides both speakerphone operation and hearing aid (e.g. telecoil) operation. The device may include a first use position for normal listening and a second, substantially different, use position for telecoil operation.
Abstract:
A mobile computing device comprises a printed circuit board, a processing circuit, a surface mount microphone, and a vibration attenuation portion. The processing circuit is disposed on a first portion of the printed circuit board. The surface mount microphone is disposed on a second portion of the printed circuit board. The vibration attenuation portion of the board is configured to attenuate vibrations from the first to the second portion of the printed circuit board.