Abstract:
In an LCD device, the slope angle of a wall surface of a wall structure (wall-surface slope angle) is varied in accordance with the angle formed between the wall structure and an alignment treatment direction (alignment treatment angle). At places where the alignment treatment angle is small, the wall-surface slope angle is made larger; conversely, at places where the alignment treatment angle is large, the wall-surface slope angle is made smaller.
Abstract:
In an LCD device having wall electrodes, four kinds of pixels are used that impart different alignment properties to the liquid crystal molecules. Specifically, the LC molecules are aligned such that: the LC molecules in first pixels twist clockwise and rise in a plus direction; the LC molecules in second pixels twist clockwise and rise in a minus direction; the LC molecules in third pixels twist counterclockwise and rise in the plus direction; and the LC molecules in fourth pixels twist counterclockwise and rise in the minus direction. The pixels of the same type are arranged in rows such that their long sides are adjacent to one another.
Abstract:
A sensor-equipped display device is provided including a display panel including a substrate, a sensor drive electrode, and a detection electrode opposed to the sensor drive electrode, wherein the detection electrode includes first and second layers in a first direction, the first layer has a first width in a second direction intersecting the first direction, the second layer has a second width in the second direction, the second width being wider than the first width, the first layer includes first lower and upper surfaces, the first upper surface being between the first lower surface and the second layer, the second layer includes a second lower surface located on the first upper surface, and a second upper surface opposed to the second lower surface, the second lower surface being between the second upper surface and the first layer, the second lower surface has a first region which is in contact with the first upper surface and a second region which is not in contact with the first upper surface, and the second region includes a part of an edge of the second lower surface.
Abstract:
According to one embodiment, a liquid crystal display device, includes a first substrate including a scanning signal line, a video signal line, a first electrode, a color filter, a common line in contact with the first electrode along the video signal line, an antireflection layer located on the common line, a transparent layer located on the antireflection layer, and a second electrode, a liquid crystal layer located on the first substrate, and a second substrate located on the liquid crystal layer, the transparent layer having a thickness of 10 nm or more and 40 nm or less.
Abstract:
Detection electrode wirings formed by an ITO film have a high resistance and the detection capability thereof is degraded with the increase of the size and/or resolution. A manufacturing method of a display device includes: (a) arranging liquid crystal between an array substrate and a counter substrate; (b) forming a metal layer and a low-reflection layer on the counter substrate after the step (a); (c) applying an overcoat film onto the metal layer and the low-reflection layer; and (d) curing the overcoat film to form a protection layer. The step (d) cures the overcoat film with light and heat.
Abstract:
Provided is a liquid crystal display panel in which both the prevention of low-temperature bubble defects and the prevention of unevenness in brightness by pressure can be achieved without the need of forming multiple types of spacers differing in the height. In a liquid crystal display panel comprising a plurality of spacers 14 arranged between a pair of transparent substrates 11 and 12 and a liquid crystal 13 encapsulated between the transparent substrates, the spacers 14 are of a uniform height and each spacer 14 is substantially in a trapezoidal shape in which the ratio between the top area and the bottom area is 0.3 or less. The spacers 14 are formed on one of the transparent substrates 11 and 12. The spacers 14 are arranged at appropriate density so that the contact area ratio of the spacers' top surfaces in contact with the opposing substrate per unit area is within a range of 0.8%-1.0%.
Abstract:
The present invention provides a liquid crystal display device having gate wires and source/drain wires with a multilayer structure made of the same material which can be manufactured at low cost, as well as a manufacturing method for the same. In accordance with the manufacturing method, a wet etching process is carried out on the gate wires and the source/drain wires using an etchant including hydrofluoric acid and an oxidant, and the concentration of hydrofluoric acid in the etchant is different between the etchant for the gate wires and that for the source/drain wires.
Abstract:
A detection device is provided including first substrate including first region, second region and third region arranged in first direction, second region arranged between first and third regions; first detection electrode arranged on first substrate; second detection electrode arranged on first substrate and being adjacent to first detection electrode; first electrode coupled to first detection electrode and continuously formed from first to third regions; second electrode coupled to second detection electrode, and continuously formed from first to third regions, convex portions located between first electrode and second electrode in second region and spaced away from first and second electrodes; and protective layer formed on first and second electrodes in first region and not formed on first electrode and second electrode in third region, wherein at least one of convex portions is covered with protective layer, and at least another one of convex portions is not covered with protective layer.
Abstract:
According to one embodiment, a display device includes an insulating substrate on which a display function layer is provided, and a protection member attached onto the insulating substrate, and the insulating substrate further includes a first surface on which the display function layer is formed and a second surface on an opposite side to the first surface, on which the protection member is attached, and at least one of the first surface and the second surface includes a projection and a recess.
Abstract:
Detection electrode wirings formed by an ITO film have a high resistance and the detection capability thereof is degraded with the increase of the size and/or resolution. A manufacturing method of a display device includes: (a) arranging liquid crystal between an array substrate and a counter substrate; (b) forming a metal layer and a low-reflection layer on the counter substrate after the step (a); (c) applying an overcoat film onto the metal layer and the low-reflection layer; and (d) curing the overcoat film to form a protection layer. The step (d) cures the overcoat film with light and heat.