Abstract:
Presented herein are systems, methods and devices relating to miniature actuatable platform systems. According to one embodiment, the systems, methods, and devices relate to controllably actuated miniature platform assemblies including a miniature mirror.
Abstract:
A longitudinal mode resonator that includes a substrate and a bar that is suspended relative to the substrate. The bar is suspended such that it is free to expand and contract longitudinally in response to the application of an electric field across its thickness. The expansion and contraction of the bar achieves resonance in response to the field having a frequency substantially equal to the fundamental frequency of the bar.
Abstract:
A resonator system wherein a plurality of resonators each including piezoelectric material are suspended relative to a substrate. An edge of each resonator is mechanically coupled to an edge of another resonator and the plurality of resonators expand and contract reaching resonance in response to an applied electric field.
Abstract:
The disclosure generally relates to method and apparatus for forming three-dimensional MEMS. More specifically, the disclosure relates to a method of controlling out-of-plane buckling in microstructural devices so as to create micro-structures with out-of-plane dimensions which are 1×, 5×, 10×, 100× or 500× the film's thickness or above the surface of the wafer. An exemplary device formed according to the disclosed principles, includes a three dimensional accelerometer having microbridges extending both above and below the wafer surface.
Abstract:
The disclosure generally relates to method and apparatus for forming three-dimensional MEMS. More specifically, the disclosure relates to a method of controlling out-of-plane buckling in microstructural devices so as to create micro-structures with out-of-plane dimensions which are 1×, 5×, 10×, 100× or 500× the film's thickness or above the surface of the wafer. An exemplary device formed according to the disclosed principles, includes a three dimensional accelerometer having microbridges extending both above and below the wafer surface.
Abstract:
The disclosure generally relates to method and apparatus for forming three-dimensional MEMS. More specifically, the disclosure relates to a method of controlling out-of-plane buckling in microstructural devices so as to create micro-structures with out-of-plane dimensions which are 1×, 5×, 10×, 100× or 500× the film's thickness or above the surface of the wafer. An exemplary device formed according to the disclosed principles, includes a three dimensional accelerometer having microbridges extending both above and below the wafer surface.
Abstract:
A system, device, and method for minimizing x-axis and/or y-axis offset shift due to internally produced as well as externally produced on chip temperature imbalances. At least one temperature gradient canceling device is disposed on a substrate including a temperature gradient sensitive device having at least one pair of sensors. Voltage signals generated by the temperature gradient canceling devices can be combined with voltage signals generated by each of the pair of sensors to account for the offset.
Abstract:
A system, device, and method for minimizing x-axis and/or y-axis offset shift due to internally produced as well as externally produced on chip temperature imbalances. At least one temperature gradient canceling device is disposed on a substrate including a temperature gradient sensitive device having at least one pair of sensors. Voltage signals generated by the temperature gradient canceling devices can be combined with voltage signals generated by each of the pair of sensors to account for the offset.
Abstract:
A resonator system wherein a plurality of resonators each including piezoelectric material are suspended relative to a substrate. An edge of each resonator is mechanically coupled to an edge of another resonator and the plurality of resonators expand and contract reaching resonance in response to an applied electric field.
Abstract:
A longitudinal mode resonator that includes a substrate and a bar that is suspended relative to the substrate. The bar is suspended such that it is free to expand and contract longitudinally in response to the application of an electric field across its thickness. The expansion and contraction of the bar achieves resonance in response to the field having a frequency substantially equal to the fundamental frequency of the bar.