Abstract:
A method determines the concentration of a substance in a subject's blood. The method includes measuring an interaction of at least one light beam with a portion of the subject's body. The method further includes calculating a value of an optically-measured parameter indicative of the interaction of the at least one light beam with the substance in the portion of the subject's body. The method further includes measuring values of one or more temperature-indicative parameters corresponding to a temperature of the portion of the subject's body. The method further includes accessing an empirical correlation of the optically-measured parameter and the one or more temperature-indicative parameters to concentrations of the substance in blood. The method further includes obtaining a concentration of the substance in the subject's blood using the empirical correlation. The concentration corresponds to the value of the optically-measured parameter and the values of the one or more temperature-indicative parameters.
Abstract:
An infrared ear thermometer includes a detector head housing, a heat sink, a recess formed in the heat sink, a thermopile sensor mounted within the recess, a thermistor, and temperature determination circuitry. The recess defines an aperture that limits the field of view of the thermopile sensor. The thermal capacities and conductivities of the heat sink and the thermopile sensor are selected so that the output signal of the thermopile sensor stabilizes during a temperature measurement. A method of determining temperature using the ear thermometer takes successive measurements, stores the measurements in a moving time window, averages the measurements in the moving window, determines whether the average has stabilized, and outputs an average temperature. A method of calculating a subject's temperature determines the temperature of a cold junction of the thermopile, looks up a bias and slope of the thermopile based upon the temperature of the cold junction, measures the output of the thermopile, and calculates the subject's temperature based upon a linear relationship between the output and the subject's temperature. The linear relationship is defined by the bias and the slope.
Abstract:
A method determines the concentration of a substance in a subject's blood. The method includes measuring an interaction of at least one light beam with a portion of the subject's body. The method further includes calculating a value of an optically-measured parameter indicative of the interaction of the at least one light beam with the substance in the portion of the subject's body. The method further includes measuring values of one or more temperature-indicative parameters corresponding to a temperature of the portion of the subject's body. The method further includes accessing an empirical correlation of the optically-measured parameter and the one or more temperature-indicative parameters to concentrations of the substance in blood. The method further includes obtaining a concentration of the substance in the subject's blood using the empirical correlation. The concentration corresponds to the value of the optically-measured parameter and the values of the one or more temperature-indicative parameters.
Abstract:
Embodiments of the present system and methods measure a concentration of a substance, such as glucose, in a body. The present embodiments measure a first amount of infrared (IR) radiation absorbed or emitted from the body in a first wavelength band, and a second amount of IR radiation absorbed or emitted from the body in a second wavelength band. The present embodiments also measure a temperature at a surface of the body and an ambient temperature. A normalized ratio parameter is calculated from the four measurements, and the concentration of the substance in the body is calculated by correlating the normalized ratio parameter with the body surface temperature and the ambient temperature using an empirically derived lookup table. Also disclosed are methods for creating the empirically derived lookup table.
Abstract:
An infrared ear thermometer includes a detector head housing, a heat sink, a recess formed in the heat sink, a thermopile sensor mounted within the recess, a thermistor, and temperature determination circuitry. The recess defines an aperture that limits the field of view of the thermopile sensor. The thermal capacities and conductivities of the heat sink and the thermopile sensor are selected so that the output signal of the thermopile sensor stabilizes during a temperature measurement. A method of determining temperature using the ear thermometer takes successive measurements, stores the measurements in a moving time window, averages the measurements in the moving window, determines whether the average has stabilized, and outputs an average temperature. A method of calculating a subject's temperature determines the temperature of a cold junction of the thermopile, looks up a bias and slope of the thermopile based upon the temperature of the cold junction, measures the output of the thermopile, and calculates the subject's temperature based upon a linear relationship between the output and the subject's temperature. The linear relationship is defined by the bias and the slope.