Abstract:
A body weight support device of the present invention is equipped with a body attachment part attached to a user's body, a floor contact part provided contactably on a floor, a leg link part for connecting the body attachment part to the floor contact part through a joint part, an actuator for driving the joint part, and a control unit for controlling a drive of the actuator, wherein the control unit drives the actuator so that the leg link part gives a body weight support force to the user through the body attachment part.
Abstract:
A walk assistance device capable of transmitting a force generated by a leg link to a user's trunk via a load transmit portion, wherein the leg link includes an upper first link portion connected to the load transmit portion via a first joint portion, a lower second link portion connected to a foot attachment portion via a second joint portion, a middle third joint portion connecting the first link portion to the second link portion such that a distance between the first joint portion and the second joint portion is variable, and a driving source that drives the third joint portion. The moment of inertia around the first joint portion of the leg link is reduced to decrease a load on the user's leg in walking. The driving source is disposed above the third joint portion of the first link portion so that the center-of-gravity of the entire leg link is located above the third joint portion. In the case where the driving source includes an electric motor and a reduction gear, the electric motor is disposed above the reduction gear.
Abstract:
A walking assistance device having an ankle joint limited in a swingable range in a rolling direction, enabling a user to open his/her legs apart more easily. The walking assistance device includes a seating member 1, a pair of leg links 2 and 2 which support the seating member 1 from below, and a ground contact member 8 connected to each leg link 2 through an ankle joint 7. The ankle joint 7 has a coupling mechanism 100 which includes a joint shaft member 106 and a retaining portion which swingably retains the joint shaft member 106 in the rolling direction in a predetermined range φ. The joint shaft member 106 is inclined to an abduction side in the rolling direction from the middle position of the predetermined range φ in which the joint shaft member is swingable in the rolling direction when the walking assistance device is in an upright state.
Abstract:
In walking assistance device, a force detector (21) is provided between thigh retaining member (9) that directly retain the thigh of the user and a thigh support member (2) that is actuated by an actuator (TA1) provided in hip coupling portion. Thereby, the load acting on the hip coupling portion can be accurately detected, and the output of the force detector can be favorably used for the purpose of controlling the actuator so as to minimize the force that is applied to the thigh of the user. In particular, to the end of providing a suitably rigidity to the thigh retaining member so that the force produced by the actuator may be evenly applied to the entire thigh, and facilitating the effort required for the wearer to wear the walking assistance device, the thigh retaining member comprises a base portion (9a) connected to the thigh support member and two pairs of resilient arms (9b, 9c) extending laterally from either side of the base portion so that the thigh retaining member generally defines a shape of letter-C in plan view.
Abstract:
A walking assistance device has a leg link formed by connecting a first link member and a second link member through a third joint assembly. A force generated at the leg link by driving the third joint assembly is transmitted to the body of a user. The walking assistance device enables the user to deeply squat by making the third joint assembly highly bendable. The third joint assembly is has with a joint link member, a first joint which connects the joint link member and a first link member, and a second joint which connects the joint link member and the second link member. The walking assistance device is further equipped with a drive source which imparts a torque in a stretching direction to the first joint, and an elastic member which elastically holds the second joint in a predetermined stretched state until predetermined value or more acts thereon.
Abstract:
A walking aid apparatus comprising a sitting member which a user sits astride and leg links each coupled to a connection provided on the undersurface of the sitting member in such a way as to be free to swing in the forward/backward direction, which improves the stability of the sitting member. The connection is adapted in such a way that a forward/backward swinging fulcrum of the leg links is located above the sitting member. More specifically, the connection is provided with an arc-shaped guide track longitudinal in the forward/backward direction and having the center of curvature above the sitting member, so that each of the leg links swings along the guide track in the forward/backward direction. If the leg links are allowed to swing freely also in the lateral direction, preferably the lateral swinging fulcrum of the leg links is also located above the sitting member.
Abstract:
A walk supporting device includes a seating member on which a user is seated in a straddling manner and a pair of left and right leg links that support the seating member from below. Each of the leg links is coupled to the seating member to freely swing in a horizontal direction. The seating member is prevented from rolling around a support shaft serving as a swing fulcrum in the horizontal direction of the leg link to improve stability in the horizontal direction of the seating member. A stopper member coupled to the seating member is inserted between joint sections at upper ends of left and right leg links supported by the support shaft. A regulating mechanism that regulates the seating member in a posture orthogonal to an equiangular bisector of an angle in the horizontal direction formed by the left and right leg links may be provided.
Abstract:
The radar apparatus of the present invention comprises a beam transmitter for radiating a radar beam, a beam receiver for receiving a reflected signal, a processor for calculating the position of the object, and a malfunction detecting device for detecting a malfunction of the radar apparatus. At least one of the area irradiated by the beam transmitter and a receiving area of the beam receiver overlaps with a movable area of a wiper blade of the wiper device, and the malfunction detecting device estimates that the radar apparatus is malfunctioning if a wiper passing signal to be detected does not appear in an output signal of the processor while a wiper movement detecting device detects that the wiper device is activated.
Abstract:
An FM radar apparatus detects a distance to and/or a speed of a target not only from peak frequencies of beat signals in respective frequency rise and fall regions but also by reusing the peak frequency in the preceding frequency rise or fall region. As a result, it becomes possible to obtain target data at twice the conventional pitch and hence to detect the target more finely and minutely.
Abstract:
A radar system and method for use in collision avoidance systems. A radar system in accordance with the present invention may comprise a plurality of antennas, an RF power generator, a transmitting unit, a receiving unit, and a direction detector. Each of the antennas is arranged to radiate a beam having substantially the same pattern as the beams radiated by the other antennas. The beam of each antenna is radiated in a slightly different direction from the beams radiated by the other antennas. Each antenna is also arranged to receive return beams, wherein each of the return beams comprises a beam radiated from one of the beam radiating means and reflected by an object. The RF power generator generates RF power of nearly constant amplitude. The transmitting unit distributes the RF power to each of the antennas, and the RF power is radiated successively. The receiving unit generates amplitude detecting signals which are used to detect the amplitudes of the return beams received by the antennas. Each of the amplitude detecting signals is utilized by a pair of antennas. One antenna of each pair radiates a beam and receives a return beam produced therefrom. The other antenna receives a return beam produced by a beam radiated by an adjacent antenna. The direction detecting means detects a direction to the object based on the amplitude detecting signals, the arrangement of the antennas, and a timing of distribution of FM signals to the antennas.