PHOTOELECTRIC CONVERSION DEVICE AND METHOD FOR MANUFACTURING SAME

    公开(公告)号:US20190393370A1

    公开(公告)日:2019-12-26

    申请号:US16560505

    申请日:2019-09-04

    Abstract: A method for manufacturing a photoelectric conversion device, wherein the photoelectric conversion device includes a semiconductor substrate having a first conductivity-type region, a second conductivity-type region, and a boundary region on a first principal surface of a semiconductor substrate, the boundary region being in contact with and separating the first conductivity-type region and the second conductivity-type region, the method including: stacking a second conductivity-type semiconductor layer over the second conductivity-type region and the boundary region on the first principal surface of the semiconductor substrate; stacking an insulating layer over the second conductivity-type semiconductor layer in the boundary region; stacking a first conductivity-type semiconductor layer over the first conductivity-type region on the first principal surface of the semiconductor substrate and on the insulating layer; stacking an electrode layer on the first conductivity-type semiconductor layer and the second conductivity-type semiconductor layer; and forming a separation groove that separates the electrode layer.

    SOLAR CELL AND PRODUCTION METHOD THEREFOR, AND SOLAR CELL MODULE

    公开(公告)号:US20190123221A1

    公开(公告)日:2019-04-25

    申请号:US16221076

    申请日:2018-12-14

    Abstract: A solar cell includes a semiconductor substrate, a first conductive layer, a second conductive layer, a first electrode, a second electrode, and an island-shaped conductive layer. The first conductive layer and the second conductive layer are disposed on one principal surface of the semiconductor substrate. The first electrode is disposed on the first conductive layer and the second electrode is disposed on the second conductive layer. The first electrode and the second electrode are electrically separated, and the island-shaped conductive layer is disposed between the first electrode and the second electrode.

    Solar cell and method for manufacturing solar cell

    公开(公告)号:US12107176B2

    公开(公告)日:2024-10-01

    申请号:US17647937

    申请日:2022-01-13

    CPC classification number: H01L31/022458 H01L31/02363 H01L31/075 H01L31/18

    Abstract: A back-contact solar cell having a first conductivity-type semiconductor layer in a first region on a back side of a semiconductor substrate, and a second conductivity-type semiconductor layer in a second region and the first region on the back side. In the first region, an intrinsic semiconductor layer and the first and second conductivity-type semiconductor layers are stacked successively on the back side. In the second region, the intrinsic semiconductor layer and the second conductivity-type semiconductor layer are stacked on the back side. In a boundary region between the first and second regions, an insulating layer, and the first and second conductivity-type semiconductor layers, are stacked successively on the back side, with the intrinsic semiconductor layer disposed between the layers and the back side. The insulating layer is interposed between the first conductivity-type semiconductor layer in the first region and the second conductivity-type semiconductor layer in the second region.

    Photovoltaic device
    15.
    发明授权

    公开(公告)号:US11004995B2

    公开(公告)日:2021-05-11

    申请号:US16341848

    申请日:2017-10-04

    Abstract: A photovoltaic device according to the present disclosure is provided with: a condensing optical system having chromatic aberration; a first photoelectric converter, which is arranged on an optical axis of the condensing optical system; and a second photoelectric converter, which is arranged on an outer peripheral side of the first photoelectric converter when viewed from an optical axis direction of the condensing optical system, and which has a bandgap lower than a bandgap of the first photoelectric converter, wherein the first photoelectric converter is arranged on an inner side of a rectangle that circumscribes a condensing region of absorbable longest-wavelength light determined based on the bandgap.

    Solar cell module and method for manufacturing same

    公开(公告)号:US10593820B2

    公开(公告)日:2020-03-17

    申请号:US15128360

    申请日:2015-03-26

    Abstract: In the solar cell module, a first solar cell and a second solar cell are stacked together with an electroconductive member interposed therebetween, such that a cleaved surface-side periphery on a light-receiving surface of the first solar cell overlaps a periphery on a back surface of the second solar cell. The first solar cell and the second solar cell each have: photoelectric conversion section including a crystalline silicon substrate; collecting electrode; and back electrode. At a section where the first solar cell and the second solar cell are stacked, the collecting electrode of the first solar cell and the back electrode of the second solar cell are electrically connected to each other by coming into contact with the electroconductive member. An insulating member is provided on a part of the cleaved surface-side periphery on the light-receiving surface of the first solar cell, where the collecting electrode is not provided.

    PHOTOELECTRIC CONVERSION DEVICE AND METHOD FOR MANUFACTURING SAME

    公开(公告)号:US20180294366A1

    公开(公告)日:2018-10-11

    申请号:US16002310

    申请日:2018-06-07

    Abstract: A photoelectric conversion device includes, on one principal surface of a semiconductor substrate, a first conductivity-type region, a second conductivity-type region, and a boundary region which is in contact with each of the first conductivity-type region and the second conductivity-type region to separate these two regions. A first conductivity-type semiconductor layer is disposed over the entire first conductivity-type region and extending over the boundary region. A second conductivity-type semiconductor layer is disposed over the entire second conductivity-type region and extending over the boundary region. An insulating layer is disposed over the entire boundary region. A first electrode is disposed over the entire first conductivity-type region and extending over the boundary region, and a second electrode is disposed over the second conductivity-type region. The second electrode is not disposed over a region where the first conductivity-type semiconductor layer is formed, and thus is separated from the first electrode.

    SOLAR CELL AND METHOD FOR MANUFACTURING SOLAR CELL

    公开(公告)号:US20220140162A1

    公开(公告)日:2022-05-05

    申请号:US17647937

    申请日:2022-01-13

    Abstract: A back-contact solar cell having a first conductivity-type semiconductor layer in a first region on a back side of a semiconductor substrate, and a second conductivity-type semiconductor layer in a second region and the first region on the back side. In the first region, an intrinsic semiconductor layer and the first and second conductivity-type semiconductor layers are stacked successively on the back side. In the second region, the intrinsic semiconductor layer and the second conductivity-type semiconductor layer are stacked on the back side. In a boundary region between the first and second regions, an insulating layer, and the first and second conductivity-type semiconductor layers, are stacked successively on the back side, with the intrinsic semiconductor layer disposed between the layers and the back side. The insulating layer is interposed between the first conductivity-type semiconductor layer in the first region and the second conductivity-type semiconductor layer in the second region.

    Method for manufacturing solar cell

    公开(公告)号:US11211519B2

    公开(公告)日:2021-12-28

    申请号:US17000226

    申请日:2020-08-21

    Abstract: The method for manufacturing a solar cell includes: forming a first semiconductor layer of first conductivity type on a surface of a semiconductor substrate; forming a lift-off layer containing a silicon-based material on the first semiconductor layer; selectively removing the lift-off layer and first semiconductor layer; forming a second semiconductor layer of second conductivity type on a surface having the lift-off layer and first semiconductor layer; and removing the second semiconductor layer covering the lift-off layer by removing the lift-off layer using an etching solution. The linear expansion coefficients of the semiconductor substrate and the lift-off layer satisfy the relational expression: the linear expansion coefficient of the lift-off layer

Patent Agency Ranking