Abstract:
A photodetecting device 1 includes an integrating sphere 20 for observing light to be measured generated according to irradiation of a sample with excitation light and a sample holder 60 removably attached to the integrating sphere 20, the integrating sphere 20 has an excitation light introducing hole 201 for introducing the excitation light and a sample introducing hole 205 for introducing a cell C held by the sample holder 60, the sample holder 60 is locked to the sample introducing hole 205 and holds the cell C for accommodating the sample, and the cell is disposed so that an entrance surface of the cell C, through which the excitation light enters the cell C, inclines relative to the surface perpendicular to the optical axis L of the excitation light.
Abstract:
A spectrometer is provided with an integrating sphere 20, inside which a sample S of a measurement target is disposed and which is adapted for observing measured light emitted from the sample S, and a Dewar vessel 50 which retains a refrigerant R for cooling the sample S and at least a portion of which is located so as to face the interior of the integrating sphere 20. Gas generated from the refrigerant R is introduced through predetermined gaps G1-G6 functioning as a gas introduction path and through a plurality of communicating passages 64 formed in a support pedestal 61, into the integrating sphere 20. The gas introduced into the integrating sphere 20 absorbs water in the integrating sphere 20 to decrease the temperature in the integrating sphere 20, so as to prevent dew condensation from occurring on a portion of a second container portion 50b of the Dewar vessel 50 exposed in the integrating sphere 20. This can prevent occurrence of dew condensation even in the case where the sample S is measured in a cooled state at a desired temperature.
Abstract:
A spectroscopic measurement apparatus comprises an integrating sphere in which a sample is located, an irradiation light supplying section supplying excitation light via an entrance aperture to the interior of the integrating sphere, a sample container holding the sample in the interior of the integrating sphere, a spectroscopic analyzer dispersing the light to be measured from an exit aperture and obtaining a wavelength spectrum, and a data analyzer performing data analysis of the wavelength spectrum. The analyzer includes a correction data obtaining section which obtains correction data of the wavelength spectrum considering light absorption by the sample container, and a sample information analyzing section which corrects and analyzes the wavelength spectrum to obtain sample information. This realizes a spectroscopic measurement apparatus, a measurement method, and a measurement program which can preferably perform spectroscopic measurement of the sample held by the sample container in the integrating sphere.
Abstract:
A spectroscopic measurement apparatus 1A comprises an integrating sphere 20 in which a sample S is located, an irradiation light supplying section 10 supplying excitation light via an entrance aperture 21 to the interior of the integrating sphere 20, a sample container 400 holding the sample S in the interior of the integrating sphere 20, a spectroscopic analyzer 30 dispersing the light to be measured from an exit aperture 22 and obtaining a wavelength spectrum, and a data analyzer 50 performing data analysis of the wavelength spectrum. The analyzer 50 includes a correction data obtaining section which obtains correction data of the wavelength spectrum considering light absorption by the sample container 400, and a sample information analyzing section which corrects and analyzes the wavelength spectrum to obtain sample information. This realizes a spectroscopic measurement apparatus, a measurement method, and a measurement program which can preferably perform spectroscopic measurement of the sample held by the sample container in the integrating sphere.
Abstract:
In a fluorescence measuring method and apparatus, a sample S is irradiated with pulsed pumping light supplied from a pumping light source. Fluorescence generated by the sample S is detected by a photodetector by way of a condensing optical system and a spectroscope. The fluorescence time waveform is subjected to a data analysis in a data processing unit in a controller. This computes waveform data and physical quantities such as fluorescence lifetime. The pumping light time waveform is fixedly arranged with respect to a time axis used for data analysis. Fitting calculations are carried out while moving the fluorescence time waveform and fitting range from an initial position earlier than a pumping light peak to a later end position, and optimal measurement waveform data is selected according to a predetermined selection criterion. Waveform data is thus computed accurately and efficiently regardless of fluctuations in the fluorescence time waveform.