Abstract:
Disclosed is a microfluidic device including a microfluidic structure formed in a platform in which various examinations, such as an immune serum examination, can be automatically performed using the biomolecule microarray chip. The biomolecule microarray chip-type microfluidic device using a biomolecule microarray chip comprises: a platform which is rotatable; a microfluidic structure disposed in the platform, comprising: a plurality of chambers; a plurality of channels connecting the chambers each other; and a plurality of valves controlling flow of fluids through the channels, wherein the microfluidic structure controls flow of a fluid sample using rotation of the platform and the valves; and a biomolecule microarray chip mounted in the platform such that biomolecule capture probes bound to the biomolecule microarray chip contact the fluid sample in the microfluidic structure.
Abstract:
Disclosed is an apparatus and method for ejecting droplets using charge concentration and liquid bridge breakup. The droplet ejection apparatus includes a reservoir storing a liquid; a capillary nozzle having a lower end submerged in the liquid stored in the reservoir and an upper end exposed outside the surface of the liquid, the capillary nozzle transferring the liquid to the upper end using capillary force; a potentiostat for applying a voltage to the liquid; a substrate mount on which a substrate is disposed to face the upper end of the capillary nozzle; and a distance adjusting unit for reciprocatingly moving the substrate between first and second positions with respect to the capillary nozzle, wherein the first position denotes a position where a distance between the upper end of the capillary nozzle and the surface of the substrate is less than a effective distance.
Abstract:
Provided are a centrifugal microfluidic device having a sample distribution structure and a centrifugal microfluidic system including the centrifugal microfluidic device. The centrifugal microfluidic device includes: a rotatable platform; a sample chamber which is disposed in the rotatable platform and houses a fluid sample; a distribution channel connected to an outlet of the sample chamber; a valve which is disposed in the outlet of the sample chamber; a plurality of non-vented reaction chambers which are disposed in the rotatable platform outside of the distribution channel in the radial direction; and a plurality of inlet channels connecting the distribution channel with the reaction chambers.
Abstract:
Provided is a droplet dispensing device having a nonconductive capillary nozzle. The droplet dispensing device comprises: a nonconductive capillary nozzle disposed in a downward position; a pump connected with the nonconductive capillary nozzle through a hermetically sealed fluid tube and generating a negative pressure to decrease the influence of gravity on a solution within the nonconductive capillary nozzle and the fluid tube; and an open circuit voltage supplier applying a voltage to the solution. The droplet dispensing device supplies the solution by capillary force to regularly maintain the shape of a droplet surface in the tip of the nonconductive capillary nozzle without using a separate driving device.
Abstract:
Provided is a rotatable microfluidic device for conducting simultaneously two or more assays. The device includes a platform which can be rotated, a first unit which is disposed at one portion of the platform and detects a target material from a sample using surface on which a capture probe selectively binds to the target material is attached, and a second unit which is disposed at another portion of the platform and detects a target material included in the sample by a different reaction from the reaction conducted in the first unit.
Abstract:
Provided is a microfluidic valve, a method of manufacturing the microfluidic valve, and a microfluidic device that employs the microfluidic valve. The microfluidic valve includes a platform that includes two substrates combined facing each other; a channel having a first depth allowing a fluid to flow between the two substrates; a valve gap that is disposed on at least a region of the channel and has a second depth which is smaller than the first depth; and a valve plug that is disposed to fill the valve gap and is formed of a valve material made by mixing a phase change material, which is solid at room temperature, with a plurality of exothermic particles that emit an amount of heat sufficient to melt the phase change material by absorbing electromagnetic waves.
Abstract:
A memory test device, including a universal register to conduct an operation by a predetermined universal command language; an extension register having a larger capacity than the universal register and to conduct an operation by a predetermined extension command language; and a controller to write a predetermined test pattern in an external memory using the extension command language, to read the test pattern written in the memory, to determine the identity of the written test pattern and the read test pattern, and to determine a presence of an error in the memory using the universal command language.
Abstract:
Provided are a valve filler and a valve unit including the valve filler. The valve filler includes: a phase transition material; and a heating fluid comprising a carrier oil and a plurality of micro heating particles suspended in the carrier oil, the heating fluid being mixed with the phase transition material, wherein, when external energy is supplied, the micro heating particles receive the external energy and generate heat to melt the phase transition material into a fluid state, and when no external energy is supplied, the phase transition material hardens into a solid state.
Abstract:
A centrifugal force based microfluidic device including a thermal activation unit, a microfluidic system including the same, and a method of operating the microfluidic system are provided. The thermal activation unit accompanies a temperature change in order to carry out its functions and having heat generation particles that absorb electromagnetic waves and generate heat in the activation unit therein.
Abstract:
A centrifugal micro fluidic system and a centrifugal magnetic position control device used in the centrifugal micro fluidic system for controlling the position of magnetic beads are provided. The centrifugal micro fluidic system comprising, a rotatable platform; a micro fluidic structure which is disposed in the platform; and a plurality of objects which include functional groups on surfaces thereof so as to capture a target material from the fluid and carry the target material while being suspended in and separated from the fluid in the micro fluidic structure, wherein the movements of the objects are controlled by a force affecting the objects differently compared to the force's effect on the fluid. When the objects are made of a magnetic material, the force may be a magnetic force applied by the centrifugal magnetic position control device.