Abstract:
An induction RF fluorescent lamp includes a lamp envelope with a re-entrant cavity both covered on a partial vacuum side with phosphor and filled with a working gas mixture; an air-core power coupler on the non-vacuum side of said re-entrant cavity comprising a coil composed of at least one turn of an electrical conductor; an electronic ballast, wherein the ballast converts mains frequency voltage and current to a power coupler frequency voltage and current, the electronic ballast providing the voltage and current to the power coupler through at least two of a plurality of electrical terminals of the electronic ballast; and a capacitor electrically connected between the air-core power coupler and at least one of the plurality of electrical terminals of the electronic ballast, wherein the magnitude of the impedance of the capacitor is high at the mains frequency and the magnitude of the impedance of that same capacitor is low at the operating frequency of the RF fluorescent lamp.
Abstract:
A processor controlled induction RF fluorescent lamp, where the control processor runs a load control algorithm at least for switching the electrical load for connection to an external dimming device, the lamp comprising a vitreous envelope filled with an ionizable gas mixture; a power coupler comprising at least one winding of an electrical conductor; and an electronic ballast providing appropriate voltage and current to the power coupler.
Abstract:
An induction RF fluorescent lamp includes a lamp envelope with a re-entrant cavity both covered on a partial vacuum side with phosphor and filled with a working gas mixture; a power coupler on the non-vacuum side of said re-entrant cavity comprising a ferromagnetic core overwound with at least one turn of an electrical conductor; an electronic ballast, wherein the ballast converts mains frequency voltage and current to a power coupler frequency voltage and current, the electronic ballast providing the voltage and current to the power coupler through at least two of a plurality of electrical terminals of the electronic ballast; a capacitor electrically connected between the ferromagnetic core and at least one of the plurality of electrical terminals of the electronic ballast, wherein the magnitude of the impedance of the capacitor is high at the mains frequency and the magnitude of the impedance of that same capacitor is low at the operating frequency of the RF fluorescent lamp.
Abstract:
A processor controlled induction RF fluorescent lamp, where the processor controls a dimming function, the lamp comprising a bulbous vitreous portion of the induction RF fluorescent lamp comprising a vitreous envelope filled with a working gas mixture; a power coupler comprising at least one winding of an electrical conductor; and an electronic ballast, wherein the electronic ballast provides appropriate voltage and current to the power coupler.
Abstract:
A fast starting dimmable induction RF fluorescent lamp comprising a dimming facility enabling the induction RF fluorescent lamp to dim in response to a signal from an external dimming device, and with structures within the bulb envelope that facilitate rapid luminous development during a turn-on phase.
Abstract:
A dimmable induction RF fluorescent light bulb that is able to replace an ordinary incandescent light bulb, both in its ability to screw into a standard incandescent light bulb socket and to have the general look of the ordinary incandescent light bulb, but with all of the advantages of an induction lamp, as described herein. The present disclosure describes structures for an induction RF fluorescent light bulb that includes a bulbous portion, a tapered portion, an electronics portion, and a screw base, creating an external look that is similar to the profile of an ordinary incandescent light bulb.
Abstract:
A high frequency induction RF fluorescent lamp with an electronic ballast operating at a frequency greater than 5 MHz comprising a burst-mode dimming facility enabling the induction RF fluorescent light bulb to dim in response to a control signal.
Abstract:
An induction RF fluorescent lamp, comprising a bulbous vitreous portion filled with a working gas mixture, a power coupler comprising at least one winding of an electrical conductor for receiving an alternating voltage, and an electronic ballast providing appropriate voltage and current to the power coupler and operating at a frequency greater than 5 MHz wherein the electronic ballast comprises an EMI filter, an AC-to-DC converter, a DC bus, an input choke inductor and a DC-to-AC inverter.
Abstract:
A fast starting induction RF fluorescent lamp capable of changing illumination level through a burst-mode dimming facility, comprising a dimming facility enabling the induction RF fluorescent lamp to dim in response to a control signal, and with structures within the bulb envelope that facilitate rapid luminous development during a turn-on phase.