Abstract:
A fast starting induction RF fluorescent lamp that is able to replace an ordinary incandescent light bulb, both in its ability to screw into a standard incandescent light bulb socket and to have the general look of the ordinary incandescent light bulb, but with all of the advantages of an induction lamp, as described herein. The present disclosure describes structures for an induction RF fluorescent lamp that includes a bulbous portion, an electronics portion, and a screw base, creating an external look that is similar to the profile of an ordinary incandescent light bulb, and with structures within the bulbous portion that facilitate rapid luminous development during the turn-on phase of the induction fluorescent lamp.
Abstract:
A lighting apparatus includes a lighting circuit (e.g., an LED lighting circuit) and a driver circuit having an output coupled to the lighting circuit and an input configured to be coupled to a power source, such as a phase cut dimmer, that provides a varying voltage waveform. The driver circuit includes an electromagnetic interference (EMI) suppression inductor configured to be coupled in series with the power source and a bypass circuit configured to divert current from the EMI filter inductor to limit a current in the EMI filter inductor.
Abstract:
A multi-view composite collimator includes a first parallel collimator segment having a plurality of collimator channels oriented at a first slant angle and a second parallel collimator segment adjacent to the first parallel collimator segment having a plurality of collimator channels oriented at a second slant angle different from the first slant angle and a bridging collimating element is provided between the first and second parallel collimator segments, wherein radiation can pass through the bridging collimating element.
Abstract:
Described herein are embodiments of an electronic device including a conductive noise shielding element. The noise shielding element may be connected to an electronic noise-generating element provided within a housing of the electronic device and may by connected to a source of direct current. The noise shielding element may be provided within the housing of the electronic device and may further be thermally connected to the housing.
Abstract:
The present embodiments relate to a control device for controlling an irradiation procedure, which is designed in such a way that a target volume is irradiated by at least two irradiation procedures. In each irradiation procedure, an energy of a particle beam is varied in such a way that the target volume is irradiated layer-wise in layers that are spatially arranged one behind another. A sequence in which the layers of the target volume are irradiated in one of the irradiation procedures is varied from irradiation procedure to irradiation procedure, in terms of a direction of incidence of the particle beam.
Abstract:
An image display apparatus includes a display panel having a plurality of electron emission portions that emit electrons, a plurality of light emitting regions positioned corresponding to the plurality of electron emission portions to emit light in response to irradiation of electrons from the electron emission portion thereon, and a shielding member provided between a substrate having the electron emission portions provided thereon and an opposing substrate having the light emitting regions thereon, and a correction circuit that corrects a pixel signal for modulating the electron emission portions. The shielding member shields electrons reflected from peripheral light emitting regions adjacent to a predetermined one of the light emitting regions to the predetermined light emitting region, and irradiates electrons from the shielding member to the predetermined light emitting region. The correction circuit carries out correction of the pixel signal with a correction value corresponding to the amount of electrons shielded by the shielding member among electrons to be irradiated to the light emitting region and correction with a correction value in which the amount of electrons irradiated from the shielding member to the light emitting region.
Abstract:
A method and apparatus for near-field focusing of an incident wave, over a range of frequencies from microwaves to optical frequencies, into a sub-wavelength spot having a peak-to-null beamwidth of λ/10. The screen may be made out of closely spaced, unequal slots cut on a metallic sheet. Nano-scale focusing capability may be achieved with a simple structure of three slots on a metallic sheet, which can be readily implemented using current nanofabrication technologies. Unlike negative-refractive-index focusing implementations, this “meta-screen” does not suffer from image degradation when losses are introduced and is easily scalable from microwave to Terahertz frequencies and beyond. The slotted geometry is designed using a theory of shifted beams to determine the necessary weighting factors for each slot element, which are then converted to appropriate slot dimensions.
Abstract:
Provided is a plasma display apparatus. The plasma display apparatus includes a scan electrode and a sustain electrode, a boundary barrier rib, and a filter. The scan and sustain electrodes are formed in parallel with each other on a front substrate. The boundary barrier rib is formed on a rear substrate facing the front substrate, and partitions a discharge cell into two up/down neighbor cells. The filter is positioned in front of a panel. The filter includes an external light shield sheet including a first base part and a first pattern part, and an ElectroMagnetic Interference (EMI) shield sheet. A thickness of the external light shield sheet is 1.01 to 2.25 times of a height of the first pattern part. The sustain electrode is commonly formed only one for the two up/down neighbor cells.
Abstract:
A liquid crystal display device includes a liquid crystal display panel, a lamp disposed behind the liquid crystal display panel, a cover accommodating the lamp, and an inverter disposed behind the cover. The inverter includes a substrate and a transformer mounted on the substrate and driving the lamp. The transformer includes a core and a coil that is wound around at least a part of the core. The liquid crystal display panel further includes a transformer cover which covers the coil, an inverter cover which covers the inverter and the transformer cover, and a metal member in the transformer cover.
Abstract:
A light-emitting ceramic based panel, hereafter termed “electroceramescent” panel, is herein claimed. The electroceramescent panel is formed on a substrate providing mechanical support as well as serving as the base electrode for the device. One or more semiconductive ceramic layers directly overlay the substrate, and electrical conductivity and ionic diffusion are controlled. Light emitting regions overlay the semiconductive ceramic layers, and said regions consist sequentially of a layer of a ceramic insulation layer and an electroluminescent layer, comprised of doped phosphors or the equivalent. One or more conductive top electrode layers having optically transmissive areas overlay the light emitting regions, and a multi-layered top barrier cover comprising one or more optically transmissive non-combustible insulation layers overlay said top electrode regions.