Abstract:
A method and a controller for operating an array of variable optical retarders are disclosed. Neighboring pixels of the array of variable optical retarders are driven with disordered temporal bit sequences. An optical beam illuminating the pixels tends to integrate time-domain modulation caused by individual pixels driven in a non-coordinated or disordered fashion, which reduces the overall time-domain modulation amplitude of the optical beam.
Abstract:
A method and a controller for operating an array of variable optical retarders are disclosed. Neighboring pixels of the array of variable optical retarders are driven with disordered temporal bit sequences. An optical beam illuminating the pixels tends to integrate time-domain modulation caused by individual pixels driven in a non-coordinated or disordered fashion, which reduces the overall time-domain modulation amplitude of the optical beam.
Abstract:
A wavelength selective switch (WSS) may include a first set of ports, each to launch a respective beam of a first set of beams, wherein the first set of beams is provided to a first position on a focal plane, and wherein a first set of wavelength channel sub-beams, included in a beam of the first set of beams, is to be incident on a particular section of a switching array. The WSS may include a second set of ports, each to launch a respective beam of a second set of beams, wherein the second set of beams is provided to a second position on the focal plane, wherein the second position is different from the first position, and wherein a second set of wavelength channel sub-beams, included in a beam of the second set of beams, is to be incident on the particular section of the switching array.
Abstract:
A method and a controller for operating an array of variable optical retarders are disclosed. Neighboring pixels of the array of variable optical retarders are driven with disordered temporal bit sequences. An optical beam illuminating the pixels tends to integrate time-domain modulation caused by individual pixels driven in a non-coordinated or disordered fashion, which reduces the overall time-domain modulation amplitude of the optical beam.
Abstract:
A colorless, directionless ROADM includes a pair of contentioned add and drop wavelength-selective optical switches, an input wavelength-selective optical switch having one input port, and an output wavelength-selective optical switch having one output port. Unintended input-to-output port couplings, which appear in the “contentioned” add and drop switches, can be mitigated by the input and output wavelength-selective optical switches carrying the through traffic.
Abstract:
A compact wavelength dispersing device and a wavelength selective optical switch based on the wavelength dispersing device is described. The wavelength dispersing device has a folding mirror that folds the optical path at least three times. A focal length of a focusing coupler of the device is reduced and the NA is increased, while the increased optical aberrations are mitigated by using an optional coma-compensating wedge. A double-pass arrangement for a transmission diffraction grating allows further focal length and overall size reduction due to increased angular dispersion.