Abstract:
Intelligent data storing apparatus for use in a control system comprising at least one programmable logic controller (PLC) for controlling one or more devices to perform a process, the process having a number of variants. The apparatus comprises means for receiving a data request including a code designating a process variant and a code indicative of one or more designated devices requiring control in order to implement the process variant; a database dictionary defining a tree structure relating operational data elements to particular variants of the process and particular devices; and means for retrieving operational data elements from the database using pathnames corresponding to the structure specified in the database dictionary and for formulating the retrieved data into a block having a predetermined structure for outputting to the PLC.
Abstract:
A package structure and method of packaging for an interferometric modulator. A thin film material is deposited over an interferometric modulator and transparent substrate to encapsulate the interferometric modulator. A gap or cavity between the interferometric modulator and the thin film provides a space in which mechanical parts of the interferometric modulator may move. The gap is created by removal of a sacrificial layer that is deposited over the interferometric modulator.
Abstract:
Light in the visible spectrum is modulated using an array of modulation elements, and control circuitry connected to the array for controlling each of the modulation elements independently, each of the modulation elements having a surface which is caused to exhibit a predetermined impedance characteristic to particular frequencies of light. The amplitude of light delivered by each of the modulation elements is controlled independently by pulse code modulation. Each modulation element has a deformable portion held under tensile stress, and the control circuitry controls the deformation of the deformable portion. Each deformable element has a deformation mechanism and an optical portion, the deformation mechanism and the optical portion independently imparting to the element respectively a controlled deformation characteristic and a controlled modulation characteristic. The deformable modulation element may be a non-metal. The elements are made by forming a sandwich of two layers and a sacrificial layer between them, the sacrificial layer having a thickness related to the final cavity dimension, and using water or an oxygen based plasma to remove the sacrificial layer.
Abstract:
Light in the visible spectrum is modulated using an array of modulation elements, and control circuitry connected to the array for controlling each of the modulation elements independently, each of the modulation elements having a surface which is caused to exhibit a predetermined impedance characteristic to particular frequencies of light. The amplitude of light delivered by each of the modulation elements is controlled independently by pulse code modulation. Each modulation element has a deformable portion held under tensile stress, and the control circuitry controls the deformation of the deformable portion. Each deformable element has a deformation mechanism and an optical portion, the deformation mechanism and the optical portion independently imparting to the element respectively a controlled deformation characteristic and a controlled modulation characteristic. The deformable modulation element may be a non-metal. The elements are made by forming a sandwich of two layers and a sacrificial layer between them, the sacrificial layer having a thickness related to the final cavity dimension, and using water or an oxygen based plasma to remove the sacrificial layer.
Abstract:
An interference modulator (Imod) incorporates anti-reflection coatings and/or micro-fabricated supplemental lighting sources. An efficient drive scheme is provided for matrix addressed arrays of IMods or other micromechanical devices. An improved color scheme provides greater flexibility. Electronic hardware can be field reconfigured to accommodate different display formats and/or application functions. An IMod's electromechanical behavior can be decoupled from its optical behavior. An improved actuation means is provided, some one of which may be hidden from view. An IMod or IMod array is fabricated and used in conjunction with a MEMS switch or switch array. An IMod can be used for optical switching and modulation. Some IMods incorporate 2-D and 3-D photonic structures. A variety of applications for the modulation of light are discussed. A MEMS manufacturing and packaging approach is provided based on a continuous web fed process. IMods can be used as test structures for the evaluation of residual stress in deposited materials.
Abstract:
An Interferometric Modulator (IMod) is a microelectromechanical device for modulating light using interference. The colors of these devices may be determined in a spatial fashion, and their inherent color shift may be compensated for using several optical compensation mechanisms. Brightness, addressing, and driving of IMods may be accomplished in a variety of ways with appropriate packaging, and peripheral electronics which can be attached and/or fabricated using one of many techniques. The devices may be used in both embedded and directly perceived applications, the latter providing multiple viewing modes as well as a multitude of product concepts ranging in size from microscopic to architectural in scope.
Abstract:
An interferometric light modulating device having two viewing surfaces is provided. In some embodiments, the device can generate two distinct images, one on each side of the device, simultaneously.
Abstract:
The invention provides a microfabrication process which may be used to manufacture a MEMS device. The process comprises depositing one or a stack of layers on a base layer, said one layer or an uppermost layer in said stack of layers being a sacrificial layer; patterning said one or a stack of layers to provide at least one aperture therethrough through which said base layer is exposed; depositing a photosensitive layer over said one or a stack of layers; and passing light through said at least one aperture to expose said photosensitive layer.
Abstract:
A MEMS-based display device is described, wherein an array of interferometric modulators are configured to reflect light through a transparent substrate. The transparent substrate is sealed to a backplate and the backplate can contain electronic circuitry for controlling the array of interferometric modulators. The backplate can provide physical support for device components, such as electronic components which can be used to control the state of the display. The backplate can also be utilized as a primary structural support for the device.
Abstract:
An Interferometric Modulator (IMod) is a microelectromechanical device for modulating light using interference. The colors of these devices may be determined in a spatial fashion, and their inherent color shift may be compensated for using several optical compensation mechanisms. Brightness, addressing, and driving of IMods may be accomplished in a variety of ways with appropriate packaging, and peripheral electronics which can be attached and/or fabricated using one of many techniques. The devices may be used in both embedded and directly perceived applications, the latter providing multiple viewing modes as well as a multitude of product concepts ranging in size from microscopic to architectural in scope.