Abstract:
A method of electronically displaying glyphs. The method includes receiving a glyph spacing, moving a first glyph toward a second glyph along an axis, identifying an intersection of a first axis coordinate of the first glyph with a second axis coordinate of the second glyph, and moving at least one of the glyphs along the axis to separate the first and second axis coordinates of the respective first and second glyphs by the glyph spacing.
Abstract:
Light in the visible spectrum is modulated using an array of modulation elements, and control circuitry connected to the array for controlling each of the modulation elements independently, each of the modulation elements having a surface which is caused to exhibit a predetermined impedance characteristic to particular frequencies of light. The amplitude of light delivered by each of the modulation elements is controlled independently by pulse code modulation. Each modulation element has a deformable portion held under tensile stress, and the control circuitry controls the deformation of the deformable portion. Each deformable element has a deformation mechanism and an optical portion, the deformation mechanism and the optical portion independently imparting to the element respectively a controlled deformation characteristic and a controlled modulation characteristic. The deformable modulation element may be a non-metal. The elements are made by forming a sandwich of two layers and a sacrificial layer between them, the sacrificial layer having a thickness related to the final cavity dimension, and using water or an oxygen based plasma to remove the sacrificial layer.
Abstract:
An interference modulator (Imod) incorporates anti-reflection coatings and/or micro-fabricated supplemental lighting sources. An efficient drive scheme is provided for matrix addressed arrays of IMods or other micromechanical devices. An improved color scheme provides greater flexibility. Electronic hardware can be field reconfigured to accommodate different display formats and/or application functions. An IMod's electromechanical behavior can be decoupled from its optical behavior. An improved actuation means is provided, some one of which may be hidden from view. An IMod or IMod array is fabricated and used in conjunction with a MEMS switch or switch array. An IMod can be used for optical switching and modulation. Some IMods incorporate 2-D and 3-D photonic structures. A variety of applications for the modulation of light are discussed. A MEMS manufacturing and packaging approach is provided based on a continuous web fed process. IMods can be used as test structures for the evaluation of residual stress in deposited materials.
Abstract:
An interference modulator (Imod) incorporates anti-reflection coatings and/or micro-fabricated supplemental lighting sources. An efficient drive scheme is provided for matrix addressed arrays of IMods or other micromechanical devices. An improved color scheme provides greater flexibility. Electronic hardware can be field reconfigured to accommodate different display formats and/or application functions. An IMod's electromechanical behavior can be decoupled from its optical behavior. An improved actuation means is provided, some one of which may be hidden from view. An IMod or IMod array is fabricated and used in conjunction with a MEMS switch or switch array. An IMod can be used for optical switching and modulation. Some IMods incorporate 2-D and 3-D photonic structures. A variety of applications for the modulation of light are discussed. A MEMS manufacturing and packaging approach is provided based on a continuous web fed process. IMods can be used as test structures for the evaluation of residual stress in deposited materials.
Abstract:
A MEMS device is provided. The MEMS device may include a first plate and a second plate defining a cavity with the first plate. The MEMS device may also include a first transducer configured to cause a first relative movement between the first and second plates and a second transducer configured to cause a second relative movement between the first and second plates..
Abstract:
An interference modulator (Imod) incorporates anti-reflection coatings and/or micro-fabricated supplemental lighting sources. An efficient drive scheme is provided for matrix addressed arrays of IMods or other micromechanical devices. An improved color scheme provides greater flexibility. Electronic hardware can be field reconfigured to accommodate different display formats and/or application functions. An IMod's electromechanical behavior can be decoupled from its optical behavior. An improved actuation means is provided, some one of which may be hidden from view. An IMod or IMod array is fabricated and used in conjunction with a MEMS switch or switch array. An IMod can be used for optical switching and modulation. Some IMods incorporate 2-D and 3-D photonic structures. A variety of applications for the modulation of light are discussed. A MEMS manufacturing and packaging approach is provided based on a continuous web fed process. IMods can be used as test structures for the evaluation of residual stress in deposited materials.
Abstract:
In one embodiment of the invention there is provided a device for modulating light. The device comprises a plurality of nano-scale particles; a conformal structure defining a surface to which the nano-scale particles conform under influence of a displacement force; and a displacement mechanism to apply the displacement force to the nano-scale particles; wherein the nano-scale particles when they conform to the conformal structure change the optical characteristics of the conformal structure.
Abstract:
A structure of a structure release and a manufacturing method are provided. The structure and manufacturing method are adapted for an interference display cell. The structure of the interference display cell includes a first electrode, a second electrode and at least one supporter. The second electrode has at least one hole and is arranged about parallel with the first electrode. The supporter is located between the first electrode and the second electrode and a cavity is formed. In the release etch process of manufacturing the structure, an etchant can pass through the hole to etch a sacrificial layer between the first and the second electrodes to form the cavity; therefore, the time needed for the process becomes shorter.
Abstract:
An interferometric light modulating device having two viewing surfaces is provided. In some embodiments, the device can generate two distinct images, one on each side of the device, simultaneously.
Abstract:
An Interferometric Modulator (IMod) is a microelectromechanical device for modulating light using interference. The colors of these devices may be determined in a spatial fashion, and their inherent color shift may be compensated for using several optical compensation mechanisms. Brightness, addressing, and driving of IMods may be accomplished in a variety of ways with appropriate packaging, and peripheral electronics which can be attached and/or fabricated using one of many techniques. The devices may be used in both embedded and directly perceived applications, the latter providing multiple viewing modes as well as a multitude of product concepts ranging in size from microscopic to architectural in scope.